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FOREWORD

This work was performed by Leon Chuck in cooperation with, and as a
subcontractor to, Norton Advanced Ceramics Division of Saint Gobain/Norton Industrial
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Subcontract Number 2883, of Prime Contract F33615-92-C-5917, issued by the United
States Department of the Air Force, Air Force Systems Command, WPAFB, OH.

This written report is mainly the work of Leon Chuck and Kevin Hallinan, Ph.D.
The contributing efforts of John Lucek, Charles Burk and Thomas Leo of Norton Advanced
Ceramics for advice, guidance and patience, Dr. Robert Brockman of the University of
Dayton; and Karl Mecklenburg of Wright Laboratory and William Coblenz of the
Advanced Research Project Agency for wisdom and guidance during this contract period,
key to the success of this program, are gratefully acknowledged.

Several additions, changes, and edits were made to this report at Norton Advanced
Ceramics.




AF/NAC/UDRI PROGRAM OVERVIEW

OBJECTIVES OF
SUBCONTRACT TASK 3.2: Bearing Balls of Improved Reliability-
Proof Testing of Ceramics Bearings

Norton Advanced Ceramics (formerly CERBEC, Inc.) subcontracted the University
of Dayton to develop an evaluation method to improve the reliability of ceramic bearing
balls. The purpose of this effort was the development of a thermal proof test for ceramic
bearings to screen out intolerably flawed (having defects that grow and lead to failure)
bearing balls that could lead to premature bearing failure. The proposed approach was to
quench hot, artificially flawed bearing balls with a known flaw size in a cool liquid bath.
This process would cause a thermally-induced tensile strain (or stress) on the bearing ball
surface flaws. The quenching fluid would ideally have high thermal conductivity, high
thermal stability, and low vapor pressure. Furthermore, it would be environmentally safe
and non-reactive with silicon nitride.

The threshold quench temperature would be identified experimentally and
analytically for 11.11 mm (7/16”") nominal diameter silicon nitride balls. At specific quench
temperatures, undetectable surface flaws that could grow to a critical size would propagate
and form detectable cracks due to a thermally induced circumferential tensile stress on the
bearing ball’s surface. These flaws would then be sufficiently large for crack detection by
such methods as florescent dye penetrant or radiography. Heat transfer and thermal stress
modeling would be limited to model verification from the experimental results obtained
from 11.11 mm (7/16”) nominal diameter balls that were to be used throughout the
program. Ideally, the modeling would be applicable to other ball sizes; however,
experimental verification of various sizes would be required.

Once thermal proof testing parameters were identified, approximately 350 ceramic
balls of 11.11 mm (7/16”) nominal diameter were proof tested for full-scale bearing testing.
The full-scale bearing test was used to determine the robustness of the thermal proof test to
screen out intolerable flaws of a specific size that would lead to premature failure.

xi




SECTION 1
INTRODUCTION

1.1 EVOLUTION OF BEARING MATERIALS

Silicon nitride has been identified as an ideal candidate material for rolling
elements in bearings. It has excellent high temperature properties and corrosion
resistance that make it useful for a wide range of temperatures, including high
temperature applications. Young's modulus is 315 GPa at 20°C, which is approximately
50 percent greater than that of steel, while its density is 60 percent lower. Silicon nitride
is also tribochemically inert; thus, it is resistant to galling with steel at high speed, load,
and temperature conditions."!

As noted earlier, the application of silicon nitride hybrid bearings has not been
widely accepted in industry because of the brittle fracture behavior of structural ceramics,
the perceived low reliability, and the high initial cost. The basic problem is that flaws in
the ceramic that lead to premature failure cannot be detected using standard quality
control techniques due to their extremely small size. It is believed by many investigators
that premature failures can be traced to the initial state of the ceramic bearing balls where
intrinsic fabrication or handling flaws of a critical size and shape (located at or below the
surface of the ball) are the origins for crack propagation or spalling. Internal flaws in the
bearing balls can be traced to impurities in raw material processing, fabrication, and
handling. Several manufacturing procedures have been changed to eliminate such
problems. Recently, silicon nitride bearings have outlasted the shafts of the gear heads
during experimental evaluation."!

Even with strict quality control, some manufactured ceramic balls will have
surface and subsurface flaws that are extremely difficult to detect by conventional
nondestructive evaluation (NDE) techniques. It is imperative that balls with critically-
sized flaws be separated from balls with tolerable flaws. By eliminating the critically-
flawed balls that lead to premature failure, the reliability of the ceramic hybrid bearing
will be increased significantly. In order to screen out critically-flawed bearing balls a
proper proof test of every ball is a necessity.




1.2 THE CONCEPT OF PROOF TESTING TO ENHANCE CERAMIC
BEARING BALL

The overall objective is to develop a method to screen out defective balls that
would lead to premature failure. The proposed method is to produce a global
circumferential surface tensile stress for a short duration. This tensile stress would cause
existing flaws of a specific size and shape on or near the ball’s surface to propagate as
cracks. This concept can be achieved by heating the balls to a specific steady-state
temperature, then quenching them in a quench bath. The required thermal stresses
induced in this process should be sufficient to propagate intolerable flaws to a size large
enough to be detectable using conventional inspection techniques.

1.2.1 Fracture Mechanics: Foundation of Thermal Proof Test

The foundation of the thermal proof test is based on fracture mechanics. From
fracture mechanics, the applied stress o for a given flaw size a is expressed as:

6 = Ki. / Y(na)'? (1.1)
where

Y is the nondimensional shape function of the flaw and specimen geometry, and
K is the fracture toughness of the material.

The Griffith criterion for crack propagation occurs when the applied stress intensity factor
Kiis equal to or greater than K. Likewise, crack propagation will not occur when Ki<
K). The Griffith criteria is used when an applied circumferential tensile strain (or stress)
is applied for a very brief time to interrogate the entire bearing ball’s surface and near
surface for intolerable flaws that would lead to low reliability. The assumption is made
that for a short time the proof load will not extend the “tolerable” flaws to an
“intolerable” flaw size by subcritical crack growth.

From Hooke’s Law, the strain € can be expressed as a function of the fracture
toughness:

e= 6/E= K. /[EY(ma)'?] . (1.2)

It is also known that the strain, €, can be induced by the material’s coefficient of thermal
expansion ¢ at a given temperature difference AT:

AT =e/a=0/(0E) =Ky /[oEY(r2)"?] . (1.3)

Therefore, a thermal quench temperature AT can be imposed on a component to
generate a thermally-induced stress on the surface and local subsurface of the ball to
cause intolerable flaws equal to or larger than size a,, to propagate. Crack propagation
from these “undetectable and intolerable” flaws can be made larger for crack detection
by NDE, such as dye penetrant. This is the basis to develop a true “pass or fail” form of




inspection after a thermal proof test. (The above equation is for an ideal model and the
time domain was neglected.)

An approximate prediction of the threshold thermal quench temperature
difference ATy, as a function of intolerable flaw size a,, is presented in Table 1 using
Equation 1.3. As shown, a ATy, of 608°C is required for a flaw size of 10 pm or larger to
propagate as a crack; this calculation is a reasonably simple first estimate. The physical
properties of silicon nitride used for the results found are presented in Table 2.

TABLE 1

PREDICTED APPROXIMATE THRESHOLD QUENCH ATy,
AS A FUNCTION OF CRITICAL SURFACE FLAW SIZE

acr, um | ATy, °C
10 608
50 278
100 192
TABLE 2
PHYSICAL PROPERTIES OF SILICON NITRIDE USED TO PREDICT ATj.

Modulus of elasticity E =315 GPa
Coefficient of linear expansion | o= 3.3 um/m °C
Poisson’s ratio n=0.28
Density p=3.2 gm/cc

1.3 REFERENCES FOR SECTION 1

I1.  Lynch, Terrence P., “Hybrid Ceramic Bearing Increase Turbine Life:
Silicon Nitride Balls in Steel Races Survive Conditions that Destroy Steel
Bearings,” Design News 2:220-222, March 25, 1991.




SECTION 2
HEAT TRANSFER ANALYSIS OF A QUENCHED CERAMIC BALL

2.1 OVERVIEW

The research described in this report deals with the development of a method to
screen out defective bearing balls. The proposed proof test involves quenching a heated
ceramic bearing ball in a cooling liquid to enlarge a pre-existing flaw that cannot be
detected to a size that allows it to be observed by standard nondestructive evaluation
(NDE). The purpose of this study was to determine the temperature that will produce a
threshold stress that is sufficient to cause crack propagation of a critical flaw to a
detectable size.

Relative to the desired proof test, analysis was performed to predict the magnitude
of the circumferential thermal stresses within the ceramic bearing ball during the
quenching process. The quenching process produces circumferential thermal stresses as a
result of temperature variation that exists radially within the bearing ball during its
transient phase. To estimate these stresses, the radial temperature variation within the
bearing ball must be predicted as a function of time. Knowledge of this temperature
variation allows the circumferential thermal stresses (which result from the material
thermal contraction) to be determined. Therefore, a thermal heat transfer model was
developed to allow for the prediction of the temperature variation within the ceramic
bearing ball during the quenching process. The model was used to identify:

(1) the proper liquid and ceramic initial temperature needed to identify the
threshold temperature that causes crack propagation for various flaw sizes, and

(2) the order of magnitude of the heat transfer properties.

Analyseé and computations were performed to model the quenching process and to
predict the temperature variation within the bearing ball as a function of time and radius.

The thermal proof test developed and used in this study subjects a ceramic bearing
ball to thermal stresses by exposing the ball to a sudden change in thermal environment.
This thermal stress was obtained by quenching a hot ball in a cooler bath of liquid. A
liquid metal bath was the liquid of choice because of its high thermal conductivity and
high convection coefficient.

The radial temperature variation with respect to time within the bearing ball
during the quenching process is determined in order to extrapolate the thermal stresses.
The thermal stresses 6 can be calculated according to the following equation:

o = ATEo,




where AT is the sudden change in the bearing ball temperature, E is the elastic modulus,
and o is the coefficient of thermal expansion. A model was developed to describe the
heat transfer to the liquid metal during the initial part of the quenching process that is
dominated by conduction. At a later time, heat convection becomes the controlling
mechanism for heat transfer. The model was modified to take this transition into account.

The following section describes the model, including the assumptions and
subsequent model development. The model uses the general heat equation to compute
the radial temperature variation within the ceramic bearing ball.

2.2 HEAT TRANSFER MODEL

The model analyzes the heated ceramic bearing ball during quenching in a stirred
liquid metal bath. During the initial transient phase, the thermal boundary layer of the
liquid metal increases rapidly due to the liquid metal’s high thermal conductivity. Later,
the growth of the thermal boundary layer gradually slows. At some point, the thermal
boundary layer growth reaches a maximum and the moving liquid begins to control the heat
transport from the thermal boundary layer, 8,, by convection of the heat that has been
conducted through the thermal boundary layer. The initial thermal response is conduction-
controlled, while the later thermal response is convection-controlled. During the
convection-controlled regime, the heat transfer coefficient, h, is merely a measure of the
thermal boundary layer thickness; that is:

k

h=-—.
5,

2.1

2.2.1 Assumptions
The assumptions used in the model development are as follows.

1. Initially, the convection heat loss from the bearing ball to the liquid is
negligible compared to the heat conducted. Later, the convection heat loss
from the bearing ball to the liquid controls the heat transfer.

2. The conduction controlled regime is valid only for a short time, approximately
2 msec, as will be shown later.

3. The conduction-controlled regime is valid only for small thermal boubndary
layer thicknesses in the liquid.

4. Convection begins when &, is roughly fixed.

5. The bearing ball is instantly and uniformly quenched in the liquid metal bath.




6. The thermophysical properties for both the ceramic bearing ball and the liquid
metal are constant during the quenching process.

2.2.2 Initial Conditions

The bearing ball is assumed to be instantly and uniformly quenched in the liquid.
This assumption neglects the actual transitioning through the air-liquid interface as it is
dropped into the liquid. Therefore, the initial conditions for ceramic bearing ball
temperature, T_, and the liquid metal temperature, T, , are at t = O:

* “co? lo?

T,(0.)=T,, and 2.2)
Tl (O, r) = TIO . (23)

2.2.3 Boundary Conditions

At the interface between the bearing ball and the liquid, the temperature of the
bearing ball is the same as the temperature of the liquid. Also, heat transport is
continuous at the ceramic bearing ball's surface atr=r, :

TC(t’ rb) = TI (t, rb) . (2.4)
During the conduction-controlled heat loss, the following flux is present at r = Iy,
oT.(t, aT (1,
_i, Leh) L) (2.5)
or or

Later, when the thermal boundary layer becomes constant, the convection losses are
constant and dominate relative to the conduction atr=r, :

dT (t,1,) -k, T (t,r,) +h(T-T.). (2.6)
or or

The terms r and 1, represent, respectively, the radial position and the outer radius of the
bearing ball; the subscripts ¢ and I are for the ceramic and liquid, respectively; k is the

thermal conductivity; and h is the convection heat transfer coefficient.

_kc

2.24 Analysis*

The general heat conduction equations in spherical coordinates, used to predict the
temperature of the bearing ball and the liquid, are shown, respectively, in Equations 2.7a
and 2.7b.

*  More detail on the derivation and finite difference heat transfer model can be found in
Appendix A.




1 3T@y _ 29T (nh) 02T, (r,t)

0 2.7
w. ot 1 or o’ SIS (2.72)
1 9Ty(r,t) _ 2 Ty(r,) . 9°Ty(r,1)

.(1_1 o = ? o + ar2 Iy <r<r b (2.7b)

where o is the thermal diffusivity defined by o = L p is the density, and cj, is the
c
p
specific heat of the material. The solution for Equation 2.7 provides the radial

temperature variation in the ceramic bearing ball and in the liquid as a function of time.

The dimensionless parameters for temperature 6, and radius { are defined as:

_ T(r, 61 —Tjo

. and (28)
¢ Tco - Tlo
{=— (2.92)
Iy
=L and t, =1. (2.9b)

Using these dimensionless parameters, the governing dimensionless equation for
the ceramic bearing ball and the liquid metal are given by:

90, 2y 30, 0%0,

= 2.10
891 2” 891 8291
T it 3 2.10b
where
O
ey =—% . 2.11)
T

The dimensionless initial conditions and the boundary conditions can be written
as follows.

att=0 0. (0,0 =1
att=0 0, (0,0)=0
at C‘:l eC =91 .

For initial times during conduction-controlled heat loss:

d0 a9
=1 —= =B ; .
at § ax 3 (2.12)




where

k
B=-—-L, 2.13
K (2.13)
At later times, for convection-controlled heat loss:
a0, _. 20
B—--Bi(0, ) =—= 2.14
or ©) or 2.14)
where Bi is the Biot number:
hr,
Bi=—%, 2.15
k (2.15)

A closed-form solution of the modified heat conduction Equation 2.10 is
intractable due to the changing boundary conditions as a function of time on the surface
of the bearing ball. An approximate solution is obtained by solving the heat conduction
(Equation 2.10) numerically by using an explicit finite-difference method. The method
solves for the liquid metal and the ceramic bearing ball temperature variation during the
quenching process.

To obtain the finite-difference form of Equation 2.10, the normalized radius { and
time t are divided into small steps, Aand At, as shown in Figure 1. The ball region
where 0 < {< 1 is divided into M+1 equal intervals. A time step At is defined according
to Equation 2.16 because of established stability criterion associated with the finite-

difference representation for the temperature distribution:™!

At < (—A—Qi (2.16)
200

The dimensionless temperature 6 (r,t) at a location r and time t is given by the
symbol 6], where m is the spatial node and j is the time node. Note that the space domain
contains M+1 nodes.

 Finite difference equations are written for both the interior and exterior nodes

where:

1. The interior node is defined as m=2,3,4,..... M. The finite-difference
approxima-tion of Equations 2.10a and 2.10b is obtained by utilizing a central
difference approximation of the derivatives. The dimensionless temperature
85! at location (m)A{ at time (j+1)At is given as:

; . i _gl i _np@i j
05 =0} +2a¢ 2| Fma =On |, ngy| O =205 46, 2.17)
CL AL AG
where
1=0,1,2,....n
m=234, M+l .
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Figure 1. Subdivisions of { and t domain into intervals A{ and At.

2. The boundary nodes are defined as node m=0 and m=M+1. The boundary
conditions at the nodes m=1 and m=M+1 describe the temperature and the
temperature variation at the surface and at the center of the bearing ball.

As mentioned previously, the initial transient heat loss occurs by conduction on
the surface. Continuity of the temperature and heat flux, at normalized radius { =1 (as
defined by the second boundary condition), and by utilizing central difference, the surface
boundary conditions can be written as:

6,-6,=B(6,-6,) , (2.18)
which can be written as:
0_+B6
g —-—m 12 2.19
> 1+B @.19)

where 0, is dimensionless surface temperature.

Later, when the thermal boundary layer is roughly fixed and convection controls
the heat loss, the surface boundary condition can be written as:

BO, +96,,

b= m‘éB—l) . (2.20)




2.3 HEAT CONDUCTION AND CONVECTION

For the cooling rate experiments, the center of several large silicon nitride balls
were drilled ultrasonically and embedded with type K thermocouples. These experiments
monitored the temperature of the ceramic bearing ball as a function of time. The
measure-ments were made in a quasi-static liquid-metal quench bath. Additional
measurements were made in stirred liquid metal to determine the cooling rate as a
function of the stir speed. The purpose of these experiments were to: (1) measure the
heat transfer rates to determine the temperature profile within the bearing balls, (2)
determine the effects of cooling rates after incorporating a stirring paddle in the bath to
produce an axial down flow needed to prevent the bearing balls from floating on the
liquid metal bath, and (3) address a concern with the one-dimensional spatial heat transfer
model regarding crack position dependence. Additional details can be found in Section 4,
Proof Test Development.

24 HEAT TRANSFER: RESULTS AND DISCUSSION

2.4.1 Modeling: Exact Solution

An exact solution was pursued concurrently with the numerical heat transfer
development. It was found that the exact solution was more difficult to obtain due to the
changing boundary conditions on the surface of the bearing with time (i.e. temperature
profile). Due to the many difficulties involved the effort was terminated.

2.4.2 Modeling: Numerical Solution

A finite difference numerical model was developed to determine the temperature
profile in a thermal quench environment for ceramic bearing balls. The temperature profiles
are a function of position and time during the quench. A FORTRAN computer code listing
(Appendix B) was developed by incorporating conduction and convection heat transfer. In
this model conduction heat transfer is used as the primary means of heat transfer for the first
moment in time before transitioning to convective heat transfer as the dominate mode for
the remaining period of time.

Initially, problems were encountered with temperature modeling of the ceramic
bearing ball quenching. The effort concentrated on remedying a perceived numerical
instability of the temperature predictions in the liquid metal and the bearing ball. To
address this problem, first-order accuracy, finite difference approximates of boundary
conditions at the center and at the surface of the bearing ball were replaced with second-
order accuracy expressions. This change, coupled with a simple program change, alleviated
the instability errors.

A thermal conduction model was initiated first, rather than a combination of both
conduction and convection, because the heat transfer rate by conduction is many times
faster than convection due to the heat transfer rate of liquid metal. A preliminary solution to
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the heat transfer model was met only at the boundary conditions since the solution became
unstable away from the liquid metal-bearing ball interface.

The model was re-examined to determine the cause of the instability. This
examination revealed that the instability in the analytical model occurred because the model
was originally developed to be valid for any time. This heat transfer model was modified to
reduce the validity of the ultimate solution to only small times after the quench. During the
short period where the maximum stresses are incurred, the resulting solution will adequately
predict the maximum stresses physically realized.

The radial temperature variation, with respect to time within the bearing ball
during the quenching process, is determined to infer the circumferential thermal stress
within the bearing ball. In the numerical analysis, the following properties were used for
the NBD-200 bearing ball: thermal conductivity was 19.5 W/(m-°C); thermal diffusivity
was 8.67x107° m*/sec; thermal expansion was 3.3x10™° m/m-°C; fracture toughness was
4.1 MPa-m"?; and a modulus of elasticity of 320 GPa. The liquid metal is tin-bismuth
which has a thermal conductivity of 20.9 W/(m-°C) and a thermal diffusivity of
1.215x10” m?%sec. The heat transfer coefficient between the metal liquid and the ball's
surface was initially assumed to be 3000 W/(m%°C) during the development of the heat
transfer model. Later it was found to be over 8000 W/(mz- °C). The measured h was re-
entered into the heat transfer model to revise the temperature profile for stress analysis.

Before the actual convective heat transfer coefficients were made available,
parametric studies were conducted, using assumed heat transfer rates, to determine the
temperature profiles within the balls. The numerical solution of the normalized
temperature 0 versus normalized bearing ball radius as a function of time is presented in
Figure 2a through 2c. Figure 2a is the temperature profile of the ball as a function of time,
assuming conduction only. Note that the temperature gradient is minor, at the normalized
radius of one, as a function of time. Figure 2b and 2c show a steep temperature gradient
within the ball when using convective heat transfer. The temperature profiles within the
bearing balls were based on the assumption that the convective heat transfer coefficients
would be within the assumed range of 300 to 3000 W/m?>°C. The convective heat transfer
coefficients used in a parametric study were from preliminary quench measurements. The
preliminary measurements indicated a need for concern regarding the reproducibility of the
heat transfer rate because of the entry point dependence of a free falling sphere into a
stirred liquid metal bath. This dependence was minimized by using an entry tube to guide
the bearings into the bath.

The convective heat transfer coefficient h was determined to be 8050 W/m?-°C
using the Heisler method, which is considered to be an exact solution of the general lump
capacitance analysis. The above given h was measured three times with excellent
repeatability. When the lump method was used, an approximate value of 6000 W/m?*°C
was determined. This value was considered a low heat transfer coefficient because the
lump method assumes the ball has a uniform temperature profile, independent of the radius,
during cooling. For these experiments, the thermocouple was located at the center of the
bearing ball.
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Figure 2. Normalized temperature of a quenched silicon nitride bearing ball as a
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The heat transfer method chosen dictates the resulting temperature profile. A
difference of one order of magnitude in the heat transfer rates has a mild effect on the
predicted temperature profile. However, the heat transfer rates may be significant enough to

cause sufficient strain contraction during cooling, which in turn would cause a global
circumferential tensile stress.

During the initial transient phase, where the thermal boundary layer of the liquid
grows rapidly, pure conduction controls the heat loss from the ball to the liquid metal. As
the thermal boundary layer grows, the heat transfer from the ball to the liquid metal due
to conduction decreases (Figure 3) and convection due to the liquid motion becomes the
principle mechanism for heat loss from the bearing ball to the liquid metal. The cut-off
time between the two regimes is delineated as follows. In the liquid metal, during the
conduction-controlled transient, the thermal boundary layer grows as

&= Jat. (2.21)

At a later time, convection of the liquid metal prohibits subsequent growth of the thermal
boundary layer. By definition, the heat transfer coefficient h is related to the thermal
boundary layer & through the following relationship:
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Figure 3. Heat transfer from the cooling bearing ball due to conduction only.
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Given the value of h roughly measured in the experiment (Appendix C), the
maximum extent of the thermal boundary layer is estimated at 0.0006 m or 0.6 mm.
During the conduction-controlled regime, the time required for d, to grow to this value is
approximately 2 msec (Figure 3). Thus, for t <2 msec, the conduction solution is
presumed valid. For times grater than 2 msec, the convection solution is used. Note that
for t >2 msec, the heat transfer coefficient is presumed constant.

Figure 4 shows the dimensionless temperature variation with respect to time
within the bearing ball during the quenching process. This figure also shows that
dimensionless ball's surface temperature drops to 0.52 in 1 msec. The surface
temperature, known as the contact temperature, is close to 0.5 due to the similar thermal
conductivity values for the liquid metal and the NBD-200 bearing ball. Up to the cut-off
time (2 msec), the dimension-less surface temperature does not change much when steady
convection controls the heat transfer from the bearing ball to the liquid metal. There is
little change in the temperature because the heat transfer from the bearing ball is
sustained by a temperature reduction inside the bearing ball.

Figure 4 shows the dimensionless temperature variation with respect to time
within the bearing ball. Dimensional results, specific to the actual proof test, can be
inferred from the dimensionless results. Considering a heated ball, diameter of unity,
initial uniform temperature of 815°C and a liquid metal bath temperature of 149°C,

: o -o-1 meec
é o5 - : Ty : | | +2meec

Y |3 moec
5 meec
. —10 msec
-5-50 meac
-+ 100 mosc
--200 msec
- 500 msec
«1 98¢

¢ T/t e V|

O 01 02 03 04 O05 08 07 08 09 1

Nomalized Radius

Figure 4. Dimensionless temperature variation with respect to time within the bearing
ball.
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Figure 5 can be interpolated from Figure 4. Figure 5 shows the temperature variation
with respect to time within the bearing ball during the quenching process. This figure
shows that the surface temperature dropped to 495°C in 1 msec. After approximately 1
sec, the ball's temperature reached 149°C, the temperature of the liquid metal.

Figure 6 also shows a comparison between the heat transfer from the ball to the
liquid metal after 2 msec due to the conduction and convection contributions.
Furthermore, this figure illustrates that, in the later transient, convection is the controlling
mechanism for the heat transfer from the bearing ball to the liquid metal.

-1 msec
-2 msec
-3 msec
-5 msec
—10 msec
-+-50 msec
100 msec
-~ 200 msac
10 | : ~-500 msec
1 s8¢

Temperature (C)

Figure 5.  The temperature variation with respect to time within a bearing ball of unity
radius.
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Figure 6. Comparison of heat transfer of the bearing ball by convection and conduction.

25 SUMMARY AND CONCLUSIONS: THERMAL ANALYSIS

A finite-forward-difference numerical method was developed to determine the
temperature profile of a thermally quenched silicon nitride bearing ball. The method
provided temperature profiles as a function of time. It was determined that a combination
of conduction and convection as a method of heat transfer was required to describe the
time dependent temperature profile. A conduction heat transfer model was used to
predict the liquid metal contribution. The convective heat transfer portion is modeled to

handle the heat transfer created when the mixing paddle collapses the boundary layer
thickness.
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Results from this analysis indicate that the thermal boundary layer is roughly fixed
at approximately 2 msec; that is, pure conduction is only valid when time t <2 msec. A
combination modeling of conductive and convective heat transfer is used for time t = 2
msec. The modeling identified the thermal boundary thickness as 0.0006 m. These
combined results further confirm that a liquid metal is an appropriate method of high heat
transfer. The heat transfer rate was found to quickly cool the outer bearing ball surface
and near subsurface to create a very high temperature gradient. This high temperature
gradient is necessary to produce a transitory circumferential tensile stress gradient. The
analytical results were within the actual measured temperature of 15 percent of the center
ball temperature for a quasi static heat transfer situation. This implies that, for a more
effective quenching for a thermal proof test, the liquid metal must be stirred to increase
the heat flow rate.

2.6 REFERENCES FOR SECTION 2

II.1 Bayazitoglu, Yildiz, and Ozisik, M. Necati, Elements of Heat Transfer,
McGraw-Hill Book Company, 1988.
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SECTION 3

STRESS ANALYSIS OF THE APPARENT STRESS PROFILE
FOR A QUENCHED BALL

As part of the effort to develop a generic thermal proof test for ceramic bearing
balls, a computer program was developed to determine the temperature variation in the
ball using the finite difference method.™ The thermal profile of the quenched ball was
used to model the time-dependent circumferential tensile stress profile. The thermal
stress modeling served as a guide to develop the thermal proof test for variable-sized
ceramic bearing balls.

This section describes how the stress profile within the bearing ball was
determined as a function of time and radial position of the quenched ceramic ball. Two
methods were chosen for this analysis. First, the temperature ™! was used to obtain
preliminary results from a two-dimensional finite element model before undertaking the
more complex modeling using a three-dimensional finite element model. The second
method was used to determine the stress profile as a function of radial position and time
using a closed-form analytical solution from a known time-dependent thermal profile.
The stress profiles from the two methods were correlated to determine a level of
consistency to assist in the optimization of the thermal proof test parameters.

3.1 FINITE ELEMENT STRESS ANALYSIS

In the initial study, the finite element model M2 1sed a two-dimensional, infinitely
long cylindrical geometry before attempting the more complex three-dimensional shape
of a sphere. The two-dimensional model was first initiated to obtain preliminary results
of the stress profile to determine if the boundary conditions were set properly. After the
two-dimensional modeling was proven, a three-dimensional model was developed to
obtain a more representative stress profile for a quenched solid sphere.

The two-dimensional model used eight node plane strain elements. Eight node
elements were used rather than four node elements since results converged better with the
eight node elements. Plane strain is defined as the state of strain in which the strain €, is
normal to the x-y plane and the shear strains Yy, and 7, are assumed to be zero."*> The
assumptions of plane strain are realistic for long bodies in the z-direction with constant
cross-sectional area subjected to loads that act in the x and y-directions. Plane stress
elements were not used because they are applicable only for thin plates in the z-
direction."?
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The three-dimensional model used eight node axisymmetric elements. Since they
are part of eight node elements, both the plane strain elements and axisymmetric elements
have four Gaussian nodes. PATRAN 3 version 1.1B was used for the finite element
modeling on a Sun Workstation. PATRAN 3, by PDA Engineering, uses P3/FEA code
for processing. PATRAN 3 uses the average of these four Gaussian nodes and assigns
each mid-element a single value of stress, strain, and shear.

Both the two- and three-dimensional models were created on a two-dimensional
plane. The model mesh was chosen to have 2613 nodes, 840 elements, one coordinate
frame, and 2613 nodal temperatures. The number of equations solved is 5226. The
volume of the three-dimensional model was determined by PATRAN 3 to be 4.18882 unit
volume with a sphere radius of unity which is in excellent agreement with the calculated
actual volume of 4.1888 unit volume. This finding shows that although the model was
drawn two-dimensionally, the axisymmetric element “sees” it as a three-dimensional
model (Figure 7). The temperature profile developed previously M1 was used and input
into PATRAN 3 in tabular form for both two-dimensional and three-dimensional element
analysis.

822
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811 821 a31
801
781 791
690 700 710 720 730 7
Y
589 L?g
{ X 709 719
729 73

| /

Figure 7.  Portion of the FEA mesh near the surface of the ball with the assigned
Gaussian node identification numbers.
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Axisymmetric elements were used instead of three-dimensional elements since the
axisymmetric elements are applicable in this study due to the sphere’s geometry and its
symmetric thermal loading. Furthermore, an axisymmetric element model of the sphere
requires a substantial reduction of computer memory for processing compared to three-
dimensional element modeling. Axisymmetric elements are useful when symmetry with
respect to geometry and loading exists about an axis of the body being analyzed. The
sphere can be represented as a semicircular area in the x-y plane, having the diameter
cord at the y-axis.

The model of the quarter sphere was made by using the y-axis as the axis of
revolution. The results of this analysis are radial, circumferential, and shear stresses as a
function of radius and the angle 0 between the x-axis and the point analyzed in cylindrical
coordinates (Figure 8). The stresses from PATRAN 3 are generated in the global
coordinates rather than in the local coordinates. Note that when 8 = 0 the shear stresses
are zero. This is not true for 6 other than zero. For a given radius, the von Mises stress is
a constant for any angle .

3.2 CLOSED-FORM THERMAL STRESS

Derived from thermal dependent stress-strain equations in solid mechanics,
Equations 3.1 and 3.2 describe the thermal stresses induced in a sphere with a specific

y-axi

X-axis

7

Local Axis

Figure 8. The angle of local coordinate system with respect to the global coordinates
system."™>
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temperature gradient with respect to radius. An 11.113 mm (7/16”) diameter ball was
modeled. The spherical stresses are three-dimensional. Because of symmetry, two of the
stresses in the two meridian planes will be equal.™ The following equations describe
the circumferential and radial thermal stresses in a solid sphere by knowing the
temperature distribution.

_2Ea 2
o, = u(—J'T dr-—J’Tr dr) (3.1)

G, = 2E—o‘(-l— j Tr 2c1r+—j T2 dr—T) (3.2)
I-p b

where the following variables are defined as:
b = outer radius of sphere,
E = modulus of elasticity,
o = coefficient of thermal expansion,
T = temperature as a function of position and time in sphere,
1 = Poisson’s ratio, and
= radius position of sphere.

A FORTRAN computer program (Appendix D) was written to determine the
thermal stresses from Equations 3.1 and 3.2 using trapezoidal numerical integration at
specific time increments of 1, 10, and 100 msec. M2 The temperature profile of the
ceramic ball as a function of time for generic conditions was obtained from detailed
thermal analysis ™' and was presented earlier in this report. In these equations, the
temperature is a function of radius. The time-dependent temperature data profile used a
trapezoidal-numerical method of integration to determine the thermal stresses. s

The physical and thermal properties of silicon nitride are assumed constant within
the temperature range to which the balls are subjected. This assumption allows the use of
a closed-form equation for this study. The results of the closed-form solution give the
radial and circumferential stresses as a function radius or normalized radius of the bearing
ball.

The failure criterion used for brittle material is the Maximum-Normal Stress
Theory. In the Maximum-Normal Stress Theory, failure occurs whenever one of the three
principal stresses equals the strength of the material. M6 An inspection of Equations 3.1
and 3.2, shows that, at the surface of the ball, the circumferential stress is maximum
while the radial stress is zero. Thus, according to the Maximum-Normal Stress Theory,
when the surface circumferential stress in the ceramic ball exceeds the ultimate tensile
strength of silicon nitride, crack propagation will occur.
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3.3 STRESS ANALYSIS: RESULTS AND DISCUSSION
3.3.1 Finite Element

Figures 9 and 10 are typical von Mises contour stress profiles of a 11.113 mm ball
after 5 and 100 msec into a thermal quench at a AT of 666°C. The von Mises tensile
stress is circumferential and maximum at the surface of the ball where it reaches
approximately 280 MPa at 5 msec. ™% The von Mises failure criteria is presented because
PATRAN3 does not offer the Maximum-Normal Stress failure criteria, which is more
representative of a brittle failure criteria. Nevertheless, the von Mises stress profile is
representative for a quenched sphere. The criteria for brittle material is mainly the tensile
magnitude of the principal stresses. Therefore, to obtain the principal circumferential tensile
stress at the surface and near-surface, the von Mises output (Figures 9 and 10) can be
multiplied by a factor of the square root of two. The principal stress will always be positive
since all stress terms are squared when von Mses criteria is used and the principal radial
stress in this same region is assumed zero.™

In the 5 msec stress contour output (Figure 9), the stress gradient is large (as
expected) compared to the 100 msec stress contour output in Figure 10. Though the stress

af |
Figure 9. Contour stress plot after 5 msec into the thermal quench of 2 11.11 mm

(7/16") diameter bearing ball using a thermal quench temperature AT of
667°C.
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magnitude is larger at 5 msec than at 100 msec, the stressed volume just below the bearing
ball's surface is very small. This high thermal proof stress on the surface is welcomed as a
short-time event to screen surface connected flaws on the balls. The short-term, high-stress
pulse meets proof testing criteria such that: (1) it screens for flaws of a specific size or
larger, and (2) the proof test does not cause further damage.

In the 100 msec stress contour output (Figure 10), the depth of the tensile stress
pulse produced by the thermal quench increases with time. Another difference between the
two time frames is that the magnitude of the maximum stress is approximately 17 percent
lIower. The time sequence between these two times can be interpreted as a dual function.
The first function is to screen for small flaws that are surface connected or that exist in the
immediate subsurface, since these flaws dictate the bearing ball's initial performance. The
second function is to screen deeper into the subsurface (such that the stressed volume is
larger) for flaws larger than near-surface flaws. As time increases, the stress pulse travels
deeper into the bearing ball where the thermal proof stress pulse dissipates to a level that
does not degrade the ball.

Figure 10. Contour stress plot after 100 msec into the thermal quench for a 11.11 mm
(7/16”) diameter bearing ball using a thermal quench temperature AT of
667°C.
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3.3.2 Closed Form

The closed-form stress solutions are presented in Figures 11 and 12. Figure 11
presents the circumferential stress profile, and Figure 12 illustrates the radial stress
profile. Both stress plots depict stresses in MPa with respect to normalized radius. The
radial stress profile in Figure 12 shows that compressive stress is induced in the ball
during quenching. Also, in ceramics, tensile stress is more critical than compressive
stress because ceramics fail more readily when subjected to tensile stress rather than
compressive stress.

Figure 11 demonstrates that the circumferential stress is tensile and is maximum
at the bearing ball’s surface. This tensile stress decays as normalized radial position
decreases. Although the tensile stress is maximum at the first moment of time during the
thermal quench, it is the near-surface volume under tensile load that is of major concern
to interrogate for intolerable flaws that would lead to premature service life.

By inspection of the plotted results in Figure 11, the greatest thermal tensile
stresses (to cause crack propagation) were located approximately 90 to 100 percent of the
normalized ball radius (approximately 0.5 mm below the surface of a 11.13 mm diameter
bearing ball). The largest apparent volume under tensile loading appears to occur at 50
msec after initiating the thermal quench. As shown (Figure 11), the thermally applied
tensile stress dissipates as a function of increasing time. The dissipation rate is governed
by the heat transfer rate and the material’s thermal properties. Therefore, the developed
thermal proof test can screen out balls with critical defects no deeper than approximately
0.5 mm below the surface of the ball. It is uncertain whether the depth of interrogation is
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Figure 11.  Closed-form solution of the circumferential (tensile) stress profile as a
function of submersion time in the quench bath.
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Figure 12. Closed form solution of the radial stress profile of a 11.11 mm diameter ball
from a thermal quench temperature AT of 666°C.

bearing ball size dependent. Actual experiments with a variety of bearing ball sizes must
be conducted to determine if there is a depth dependency.

3.3.3 Finite Element Analysis (FEA) and Closed-Form Correlation

The closed-form and FEA circumferential stress results are presented in Figures
13 through 15 at time sequences of 1, 10, and 100 msec, respectively. M2 The thermal
quench temperature AT used was 667°C. The results are presented as a function of
normalized radii. As mentioned before, two-dimensional FEA analysis was performed
before three- dimensional analysis to ensure appropriate boundary conditions were
applied properly. In these figures, the results of the two-dimensional stress profile are
lower than the three-dimensional stress profile, as expected.

The thermal stress illustrated in Figures 13 through 15 profiles are for the 11.11
mm (7/16") diameter bearing ball. The stress profiles are from the analysis of: (1) two-
dimensional FEA, (2) three-dimensional FEA, and (3) closed-form solutions. As
shown, the three-dimensional and closed-form solutions are in excellent agreement at
time t = 1, 10, and 100 msec. The deviation of the two-dimensional FEA solution
increases as time increases; this was expected because the third principal stress was not
accounted for. The two-dimensional FEA solution would be correct for a long cylindrical
bearing roller. Since the agreement is excellent between the closed-form and the three-
dimensional FEA stress profile solutions, three-dimensional FEA modeling is no longer
necessary. However, numerical thermal modeling is still essential to obtain the
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Figure 13.

The closed-form and the three-dimensional FEA apparent tangential stresses
as a function of normalized bearing ball radius are in excellent agreement at
1 msec. Two-dimensional FEA results show only a slight deviation at this
point in time.

Thermal Stress
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Figure 14.

The deviation for two-dimensional FEA apparent tangential stress solution
is evident compared to the closed form and three-dimensional FEA solutions
at 10 msec.
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Figure 15. At 100 msec, the three-dimensional FEA and closed form of the apparent
tangential stress as a function of normalized radius are still in excellent
agreement, whereas, the two-dimensional FEA solution is not.

temperature profiles as a function of time for other bearing ball sizes. Modeling was

continued for other sized balls, but it could not be verified without actual measurements
of other ball sizes.

The percent difference of the maximum circumferential stress between the FEA
and closed-form results can be determined by linear interpolation of the FEA results of
the node points below the surface of the ball to approximate the surface circumferential
stresses (Table 3 and Figure 15). The interpolation uses the Guassian points of the last
two elements of a radial cord near the surface of the ball (Equation 3.3). The percentage
difference is then calculated using Equation 3.4.

c-Scir = Ocir,n=740 + (Gcir,n=740 - <5cir,n=760)/ 2 (33)
PBdiff = FEA - Closed Form (100) G.4)
FEA

From Table 4, the differences between the closed-form and FEA results are
negligible. Note that the resulting stresses generated by both methods are only the
apparent differential stresses in the ball and not the actual stresses. Actual stresses cannot
be determined because the ball has an unknown initial residual state of stress after the
manufacturing process that could be either tensile or compressive.
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TABLE 3

A TABULAR SUMMARY OF THE THREE-DIMENSIONAL SOLUTION OF
THE CIRCUMFERENTIAL STRESS

Time msec O.ir at node O.i: at node
n =821, MPa n = 831, MPa
1 85.2 257
10 242 317
100 190 211
TABLE 4

A TABULAR COMPARISON OF THE CLOSED-FORM SOLUTION AND
THE THREE-DIMENSIONAL CIRCUMFERENTIAL TENSILE STRESS

Time |Closed Form [FEA [Percent Difference
msec MPa MPa
1 344 343 0.5
10 345 355 2.8
100 220 221 0.5

34 SUMMARY AND CONCLUSIONS: STRESS ANALYSIS

The apparent thermal stress profile as a function of time was obtained from two
methods: finite element analysis (FEA) and closed-form analytical solution. Within the
FEA analysis, two methods were pursued sequentially: two-dimensional, followed by
three-dimensional solution for the state of stress as a function of time. The steps
undertaken were for proper development of the modeling and boundary condition setup.

|
The results of this work showed the two-dimensional, three-dimensional, and

closed-form solutions for the stress profile within the quenched bearing ball gave
excellent agreement for a very short time after quenching. As time increased, the two-
dimensional stress profile as a function of increasing time also deviated from the three-
dimensional and closed-form solutions. The deviation of the two-dimensional solution
was determined by excluding the third principal stress. The profile of the state of stress is
normally described as the apparent stress profile because the initial state of residual stress

is unknown after fabrication or after proof testing.

|

Another significant result from this effort is that modeling supports the notion that
a circumnferential tensile stress pulse can be generated. This stress pulse originates from
the cooling of a hot ceramic bearing ball in a cool liquid metal bath to create this thermal
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strain or stress field on the bearing ball surface and near surface. The depth of the tensile
stress pulse, as solved, was approximately 10 percent of the normalized diameter or 0.5
mm from the ball’s surface. The largest volume under applied tensile loading appeared to
occur approximately 50 msec after the initial quench cycle began. Although the tensile
stress was maximum at the first moment of time during the thermal quench, it is the near-
surface volume under tensile load that is of major concern to interrogate for intolerable
flaws that lead to premature service life. After 50 msec, the stress pulse through the
cooling bearing ball began to dissipate due to the difference in thermal mass and could no
longer interrogate for intolerable flaws.
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SECTION 4
PROOF TEST DEVELOPMENT

41 OVERVIEW

The goal of the Proof Test Development portion of this effort was to improve
silicon nitride bearing ball reliability by screening out balls that could lead to premature
failure. A parallel effort by NAC and Timken Co. was conducted to determine lifetimes
as a function of flaw size on 11.11 mm (7/16”) diameter silicon nitride balls. For the
purposes of this research effort, flaws were artificially induced in the balls using Vicker’s
indentation. Production-grade silicon nitride balls, with and without artificial flaws, were
evaluated by thrust-loaded rolling contact fatigue (RCF) tests. The results from these
tests were used to design the proof test to screen out balls with intolerable flaws.

Flaws exist in all components and can be tolerable (not large enough to propagate
under use conditions) or intolerable (large enough to grow during service). NDE
techniques are not adequate to detect all the flaws that can lead to catastrophic failure
(those below approximately 50 pm). To complement or to supplement NDE, a proof test
is necessary. There is also a possibility that the proof test itself could further damage the
component; therefore, the primary goals for this effort were:

(1) to have as short a duration to temperature exposure as possible to minimize
crack growth,

(2) to have a sufficient quantity of test samples so as to give statistical
significance to the data, and

(3) to have a well-behaved, reproducible stress state in the bearing balls.

In this effort, the foundation of the proof test is fracture mechanics. Once a lower-
limit flaw size has been identified, a proof load can be determined. Since the properties
of silicon nitride (Table 2) are known, an induced contraction of the circumferential strain
can be obtained by rapidly cooling a solid sphere through a specific differential
temperature. Cooling the solid sphere rapidly causes the outer layer of the sphere to
contract against the hotter inner core of the solid sphere. To obtain global strain
contraction, and thus produce this circumferential tensile stress, the quench bath medium
must have a high thermal conductivity compared to the ceramic bearing ball. Otherwise,
the temperature profile in the ball would not have the necessary gradient to produce the
tensile strain or stress required. Typical quench liquids are water or oil; however, the heat
transfer is low through the vapor phase that forms from these high vapor pressure liquids.
Therefore, a quench liquid was required with a low vapor pressure that would provide
sufficient heat transfer for the proof test.
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The quench bath medium developed and used in this effort was a liquid metal.
Hot bearing balls were quenched in the liquid metal to induce a thermal stress pulse on
the surface and subsurface of the ball. This circumferential tensile stress from the
thermal quench caused existing intolerable flaws in these localized regions to propagate
as cracks. Dye penetrant was used to identify balls with crack extensions from intolerable
flaws.

In the initial test development, balls with artificial flaws made by a Vicker’s
indenter were used for concept demonstration and determination of the technique’s ability
to locate the largest single artificial flaw on each ball tested. The artificial flaws were
used to prove that cracks propagate from the worst defect present at the surface of the
ball. As-manufactured balls (i.e., balls with natural or intrinsic flaws) were then used in
the test to gather the failure frequency as a function of quench temperature.

4.2 FRACTURE MECHANICS: FOUNDATION OF THERMAL PROOF
TEST

From fracture mechanics, the applied stress (o) for a given flaw size a is
expressed as:

6 =K, / Y(ma)"? (4.1)

where
Y is the nondimensional shape function of the flaw and specimen geometry, and
K is the fracture toughness of the material.

The Griffith criterion was used to develop this proof test. The Griffith criterion
states that crack propagation occurs when the applied stress intensity factor K; 1s equal to
or greater than Ky.. Likewise, crack propagation will not occur when K; < Ky. In this
proof test, a proof load is applied to probe the entire bearing ball’s surface for intolerable
flaws. Intolerable flaws would extend as cracks; tolerable flaws would not extend
assuming subcritical crack growth does not occur during this proof load.

From Hooke’s Law, the strain (€) can be expressed as a function of the fracture
toughness, and is given as:

e=0/E=Ky /[EY(ra)"?] . 4.2)

It is also known that the strain € can be induced by the material’s coefficient of thermal
expansion (o) at a given temperature difference AT:

AT =¢/a=0/(aE) =Ky / [0EY(ra)"?] . 4.3)
Note that the above simple equation is for an ideal model and time domain is

neglected. Therefore, a thermal quench temperature, AT, can be imposed on a component

31




to generate a thermally-induced stress on the surface and local subsurface of the ball,
causing intolerable flaws (equal to or larger than size a) to propagate to a size that will
be detectable by NDE. This proposed proof test technique is the basis for developing a
true “pass or fail” form of inspection.

4.3 CONCEPT DEMONSTRATION
4.3.1 Quench Bath: Selection

A survey of available quench media that have the following attributes was
conducted:

(1) chemically inert to the bearing material,

(2) favorable heat transfer properties,

(3) low melting temperature,

(4) low cost,

(5) low vapor pressure (high boiling point), and
(6) safe for users.

Table 5 provides the thermal conductivity for each liquid or liquid metal in
comparison to some common liquids (e.g., water). Low-melting liquid metals with the best
thermal properties are sodium, potassium, and lithium. However, these materials are too
hazardous; they could potentially corrode the ceramic bearings.

Lead, tin, and bismuth have good thermal properties, but their melting points are
high and would require a furnace with the capability to heat to a higher temperature,
resulting in increased cost. Furthermore, the higher temperatures required to melt these
metals increases the potential for thermal degradation of the bearing material.

Indium has excellent thermal properties; however, the cost is prohibitive for the
quantlty required. Even 66In-34Bi, having a melting point of 72°C with approximately 37
W/m'C, was quoted at $1,610 per liter. Other fusible alloys with low melting points cannot
be conveniently used due to the presence of lead or cadmium, which could become a safety
hazard.

The best compromise was a low-melting-point fusible alloy such as 58Bi-42Sn. Its
thermal conductivity compared to water was more than 30 times greater and the melting
point was relatively low. Approximately more than 9 kg (20 Ibs) of 58Bi-42Sn was
obtained to yield a quench bath volume of approximately 1 liter for this demonstration.

4.3.2 Quench Bath: Oxide Scale Prevention

A problem developed in the investigation of the immersion time and drop height
required to obtain the necessary thermal quench submersion time. It was not known at the
time that a metal oxide scaling of molten eutectic metal would create a problem. The hot
liquid metal bath reacted with the oxygen in the air to form an unwanted floating surface
scale. This scale adhered to the ceramic balls during the preliminary immersion tests.
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TABLE 5
THERMAL CONDUCTIVITY OF LIQUIDS
Liquid Temperature, °C Thermal Conductivity, W/m-°C

Water 0 0.58
Water 100 0.68
Ethylene Glycol 38 0.27
Kerosene 18 0.17
Sodium 93 84.9
Potassium 425 39.5
Lithium 204 46.4
Mercury 93 104
56Na-44K 93 25.8
Lead 327 ~15
Tin 232 ~30
Bismuth 271 ~17
Indium 157 ~42
66In-34Bi 72 ~37
52Bi-18Sn-30Pb 95 ~20
55Bi-45Pb 124 ~16
58Bi-42Sn 138 20.9
45Bi-23Pb-8Sn-5Cd-19In 47 not found but believed to be comparable
49Bi-18Pb-12Sn-21In 58 not found but believed to be comparable
53Bi-32Pb-15Sn 95 not found but believed to be comparable

Although the metal oxide adherence to the ceramic bearing ball is weak, time and
effort are required to peel the “tin foil” from the ceramic ball. The elimination of the
floating metal oxide scale was partially solved by using rosin flux (typically used for lead-
tin solder); however, this solution was not considered sufficient. This problem was further
resolved by forming an oxygen barrier. To create this barrier a layer of peanut oil,
approximately 5 mm deep, was added to the liquid metal bath. The oil floated on top of the
liquid metal, as expected, creating an oil-metal parfait. The peanut oil smoked very lightly
when the stagnant liquid metal bath was kept at approximately 160 to 170°C in air. Peanut
oil was tried because it is inexpensive compared to silicone oil, and the oil is not considered
to be an environmental hazard.

It was later found that the long-term performance of the peanut oil was marginal in
preventing metal oxide formation because it degraded. Midway through the program, the
peanut oil was replaced with silicone oil. The silicone oil provided better oxidation
resistance by forming an oxidation barrier for the hot liquid metal quench bath. The
silicone oil was also chosen for its long-term resistance to thermal degradation. The
degradation of the peanut oil was accelerated by using a stirring paddle in the quench bath
to generate a downward axial current flow which drug the buoyant ceramic bearing ball into
the liquid metal bath. This action more uniformly quenched the bearing ball and increased
submersion time. The mixing paddle created sufficient agitation to accelerate the
degradation of the peanut oil. More detail is presented in the following section.
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4.3.3 Thermal Quench Demonstration

Before the concept demonstration, immersion time was a concern. For the thermal
proof test to succeed, the hot bearing ball had to cool uniformly in the liquid metal bath. A
uniformly cooled sphere generates a uniform and global circumferential tensile stress on the
bearing ball's near-surface. The problem with immersion time was due to the relative
densities of the ceramic ball and the liquid metal, causing the ceramic bearing balls to float
in the liquid metal. The thermal modeling was under development during this period of
thermal quench development; therefore, an initial estimate of 1 second (minimum) was the
required immersion time in the liquid metal bath. When the modeling was completed, a
minimum immersion time of 50 to 100 msec was determined (Figure 11).

The first attempt to study immersion time provided surprising results.” A rejected
14.29 mm (9/16 inch) diameter silicon nitride ball, with a surface flaw from a finishing
operation, was heated to 690°C in air and quenched in a 155°C liquid metal quench bath
from a height of approximately 0.5 meter. (The initial surface flaw was not characterized
before this demonstration.) A thermal quench temperature AT of 535°C was sufficient to
cause a flaw in the ball to propagate as a crack (Figure 16). The main crack length before
crack branching in Figure 16 was 1.23 mm. The crack shown here was later found to be the
most common fracture feature of a quenched bearing ball; the main flaw origin is centered

Figure 16.  Photomacrograph of the first attempt to thermal quench a rejected 14.29 mm
diameter (9/16") bearing ball with a finishing flaw at a quench temperature AT
of 535°C. The crack shown here was later found to be the most common
fracture feature of a quenched bearing ball: the main failure origin is centered
between 2 crack branches or bifurcation.

* Only one silicon nitride bearing ball of this size (14.29 mm diameter) was used.
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between the two crack branches or bifurcation. After the concept had been demonstrated
successfully, the next primary focus was the determination of the required thermal quench
temperature AT as a function of crack size a.

4.4 THERMAL QUENCH TEMPERATURE AT

To obtain a correlation of the thermal quench temperature AT as a function of flaw
size a, controlled surface flaws were generated on NBD-200 silicon nitride bearing balls by
using a Vicker’s indenter as a function of load. The indenter load was planned to range
from 0.2 to 5 kg to obtain a controlled range of flaw sizes.

44.1 Oxidation Prevention

Ten NBD-200 11.11 mm (7/16”) diameter bearing balls (Lot No. 922563.03) were
tested from a thermal quench temperature AT of 389 to 666°C (700 to 1200°F). Prior to
heating, the bearings were indented with a Vicker's indenter; loading was accomplished in
3045 seconds. The bearing balls, in a mullite crucible, were individually heated to
temperature in a preheated oven in air. The hot bearing balls were dropped into the liquid
metal quench bath from a height of 0.6 m above the bath surface.

The results of the experiment (Table 6) showed that specimens 1, 2, and 3 were
covered with heavy oxidation. The oxidation made it difficult to locate the indents;
therefore, a weak solution of HF acid was used. Upon re-examination of the balls, crack
extension from the indents were not found (Figure 17). The initial soak time of 20 minutes
was shortened to 10 minutes to minimize surface oxidation; however, the shortened time
proved just as unsuccessful.

TABLE 6

PRELIMINARY RESULTS OF THERMAL QUENCH PROOF TESTING
FROM A DROP HEIGHT OF 0.6 m

Specimen | Load | Number of Indent/Crack Extension
Number | kg Indents | AT, °C (°F) Oxidation

1 0.5 1 389 (700) Heavy None

2 3.0 4 555 (1000) Heavy None

3 3.0 4 555 (1000) Heavy None

Starting with specimen 4, a small graphite crucible was used as a cover to help
minimize oxidation. The indentation load was increased to 5 kg to determine if crack
extension could be achieved, and two indents were placed on the bearing ball. The result
from these changes was a light localized oxidation or no oxidation on the ball surface where
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the indents were found readily. However, no crack extension was observed (specimens 4

through 6) from the radial cracks of the indents at a thermal quench temperature AT of 444
to 556°C (800 to 1000°F) (Table 7).

TABLE 7

ADDITIONAL PRELIMINARY RESULTS OF THERMAL QUENCH PROOF
TESTING FROM A DROP HEIGHT OF 0.6m

Specimen |[Load,{ Number

Number | kg | of Indents | AT, °C (°F) Oxidation Indent/Crack Extension
4 5.0 2 444 (800) | Heavy -None
5 5.0 2 444 (800) | Light/Localized | None
6 5.0 2 556 (1000) | Light/Localized | None

For specimens 7 through 10 (Table 8), the indentation load was maintained at 5 kg,
but the quench temperature AT was increased to 667°C (1200°F). Crack extension was
observed from this change of AT, but it was not observed from the radial cracks of the
indentations. The observed crack extensions were from natural surface or subsurface flaws
on the bearing balls (Figure 18). In one case, the crack path intercepted a datum marker on
the bearing ball. The datum marker is a series of five to seven 1 kg indents which create a
reference symbol on the ball. This datum marker was placed between the two large 5 kg
indents.

Two preliminary conclusions were drawn from these results. First, heating the
silicon nitride bearing balls in air appeared to inhibit any crack extension when subjected to

Figure 17.  Mild acid etched silicon nitride bearing ball after a thermal quench with no

crack extension from the Vicker’s indent flaw.
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TABLE 8

ADDITIONAL PRELIMINARY RESULTS OF THERMAL QUENCH PROOF !
TESTING FROM A DROP HEIGHT OF 0.6 m. :

Specimen |Load,| Number AT, Indent/Crack
Number | kg | ofIndents | °C (°F) Oxidation Extension
7 5.0 2 666 (1200) | Light/Localized | None/From Natural Flaw
8 5.0 2 666 (1200 | Light/Localized | None/From Natural Flaw
9 5.0 2 666 (1200) | Light/Localized | None/From Natural Flaw
10 5.0 2 666 (1200) | Light/Localized | Intercepted Datum Marker

a thermal quench. Heat treatment in air may be beneficial in increasing the reliability of
these bearing balls, similar to the present technique used by NAC on NT-154 silicon nitride.
Second, the present thermal proof test concept causes intolerable flaws on the surface or
near-surface to propagate to detectable flaw sizes. However, it is not understood why crack
extension did not occur from the induced flaws of 5 kg indents.

4.4.2 Immersion Velocity and Depth

Optical inspection indicated the radial cracks from the diagonals of the indents were
the largest surface flaws on the ball, but crack extension from these flaws did not occur. It
was hypothesized that the technique can only detect flaws that are position-dependent on the
free falling sphere as it enters into the liquid metal quench bath. In other words, when one
hemisphere makes the first contact with the quench bath and if the flaw is located on that

Figure 18. Crack extension from an intrinsic flaw (on the left) was obtained on a
quenched bearing ball rather than from the large Vicker’s indent flaw on the
right. The dark carbonized area is an artifact from the charring of peanut oil.
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hemisphere, crack extension will occur from the worst flaw. If the flaw is located on the
opposite hemisphere, crack extension may not occur because this hemisphere experiences
the shortest immersion time. The shorter immersion time will not allow for the necessary
uniform thermal profile to generate the global circumferential tensile profile.

To test the above hypothesis, an additional 14 (Tables 9 and 10) NBD-200 11.11
mm (7/16”) diameter bearing balls were evaluated from a thermal quench temperature AT
of 556 to 833°C (1000 to 1500°F). Several changes were made in the test procedures. Prior
to heating, multiple Vicker's indents, no closer than 5 mm to one another, were made to
cover the entire bearing ball. The bearing balls, in a covered graphite crucible, were
individually heated to a quench temperature AT in a preheated oven in air. The graphite
was used to maintain a reducing environment to minimize oxidation of the balls. The only
time the hot bearing ball was subjected to oxidation was during the free fall into the liquid
metal quench bath via an enclosed metal chute. The hot bearing balls were dropped from
increased distances of either 0.76 m (2.5 ft) or 1.52 m (5.0 ft) from 0.6 m (2 ft). The
purpose of these changes was to determine why the first ten specimens did not show crack
propagation from the induced artificial flaws. If a uniform thermal stress gradient is not
formed, detection of the largest surface or subsurface defect is position-dependent. Flaw
position dependence on the ball as the ball drops into the liquid metal bath is highly
undesirable.

TABLE 9

UPDATED RESULTS OF THERMAL QUENCH PROOF
TESTING USING A QUASI-STATIC QUENCH BATH
AND AN INCREASED DROP HEIGHT OF 0.76 m (2.5 ft)

Specimen | Load, | Number of Indent/Crack
Number | kg | Indents | AT,°C (°F) Oxidation Extension
11 5.0 5-6 611 (1100) | Light/Localized | None/From Natural Flaw &
Intercepted Indentation

12 5.0 5-6 556 (1000) | Light/Localized | None

13 5.0 5-6 556 (1000) | Light/Localized | None

14 5.0 5-6 722 (1300) | Light/Localized | None/From Natural Flaw &
Intercepted Indentation

15 50 5-6 778 (1400) | Light/ Localized | None/From Natural Flaw &
Intercepted Indentation

16 5.0 5-6 833 (1500) | Light/Localized |None/From Natural Flaw &
Intercepted Indentation

17 5.0 5-6 667 (1200) | Light/Localized | None/From Natural Flaw &
Intercepted Indentation

Thus, the new objective was to demonstrate that crack propagation be induced in
artificial flaws made by indentation, by producing a uniform thermal stress gradient over the
entire bearing ball surface. To achieve this objective, multiple artificially-induced defects
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were placed over the entire surface of the ball. Covering the entire ball with defects
eliminated the dependency of flaw position. This solution was used until a uniform thermal
stress field could be achieved. The possible solutions for achieving a uniform stress were:

1) increase the drop height,

2) propel the bearing ball,

3) impart a spin on the ball, and

4) place a stirrer into the liquid metal bath.

TABLE 10

UPDATED RESULTS OF THERMAL QUENCH PROOF
TESTING USING A QUASI-STATIC QUENCH BATH
AND AN INCREASED DROP HEIGHT 1.52 (5.0 ft).

Specimen | Load,| Number of | AT, °C
Number | kg | Indents (’F) Oxidation Indent/Crack Extension
18 5.0 16 667 (1200) | Light/Localized | Yes/From Indentation
19 3.0 16 667 (1200) | Light/Localized | Yes/From Indentation
20 3.0 16 667 (1200) | Light/Localized | None/From Natural Flaw &
Intercepted Indentation
21 3.0 22+1 667 (1200) | Light/Localized | None/From Natural Flaw
22 3.0 22+1 667 (1200) | Light/Localized | Yes/From Indentation
23 3.0 22+1 611 (1100) | Light/Localized | None/From Natural Flaw &
Intercepted Indentation
24 3.0 22+1 611 (1100) | Light/Localized | None/From Natural Flaw &
Intercepted Indentation

Increasing the drop height would produce a greater terminal velocity before the ball
enters the liquid; however, height limitation is a factor because the velocity is a function of
the square root of the height. It was determined that the most practicable solution, other
than increasing the drop height, was to continuously stir the liquid metal. It was surmised
that the flow current generated by the stirrer would cause the ball to be submerged in the
liquid metal longer.

As shown in Table 9, from specimens 11 through 13, the preliminary threshold
quench temperature to cause crack extension from natural defects is 611°C (1100°F). The
results of specimens 14 through 17 show crack extension from the artificial flaws was not
possible. The thermal quench temperature was as high as 833°C (1500°F). It should be
noted that specimens 11 through 17 have five to six localized artificial flaws on the balls. It
can then be concluded that a uniform thermal stress field does not exist and flaw detection
by this proof test technique is position-dependent.

Since the preliminary conclusion is that flaw detection is position dependent when
using the proof test in this form, the drop height of 0.76 m was increased to 1.52 m (5.0 ft)
above the quench bath. The increased drop height should increase the ball’s immersion
depth and shorten the entrance time (i.e., time for the ball to be totally submerged). The
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is presented in Table 10 with specimens 18 through 24. Crack extension does occur from
the artificial defects (Figure 19); but was not always accomplished on these tested balls.
Three of the five balls showed crack extension from the artificial defects. It was concluded
that the thermal stress field is still a major issue when considering that the balls have 16 to
22 indentations. It should be noted that a 3 kg indentation load was used on six of the seven
balls, and crack extension from these indentations was 33 percent successful. Therefore, the
results indicate that an increased drop height is beneficial to promote the increase of
immersion time.

Figure 19.  Crack extension from a Vicker’s indent flaw was finally achieved by
increasing the drop height.

4.4.3 Immersion Time

As shown in Table 11, specimens 25 through 35 strongly indicate that the transient
thermal gradient can be eliminated by using a rapidly stirred liquid metal. Specifically, the
specimens were tested at a thermal quench temperature AT of 667°C (1200°F) with artificial
flaws from 5 kg Vicker’s indentations. The liquid metal bath was stirred at a constant
angular velocity for six specimens (numbers 25 through 30). The stirrer was angled
approximately 20° from the vertical axis and placed off-center to prevent the formation of
the typical center vortex from the stirring action. Bearing balls, covered with 22 artificial
flaws, were examined and found to have crack propagation from indentation flaws after
quenching. However, bearing balls, covered with six or 16 indentation flaws, showed
mixed results. It was concluded that the stirring motion or velocity of the liquid metal was
not effective enough to prevent flaw position dependency. The stirring paddle used was
designed for semi-solid or highly viscous fluid mixing.
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TABLE 11

UPDATED RESULTS OF THERMAL QUENCH PROOF TESTING USING A
STIRRED QUENCH BATH, THUS INDICATING THAT THE STIRRED ACTION
OF THE QUENCH BATH IS NEEDED TO PROMOTE UNIFORM QUENCHING

Number| Drop
Specimen |Load, of Height, AT
[Number | kg | Indents| m(ft) | oc (°F) Oxidation Indent/Crack Extension

25 50 22+] 12m 667 | Light/Localized | Yes/From Indentation
(4.0ft) | (1200)

26 50 22x1 1.2m 667 | Light/Localized | Yes/From Indentation
(4.0ft) | (1200)

27 5.0 22+1 1.2m 667 | Light/Localized | Yes/From Indentation
(4.0ft) | (1200)

28 50 22+1 1.2m 667 | Light/Localized | None/From Natural Flaw
4.0ft) | (1200) & Intercepted Indentation

29 5.0 6 12m 667 | Light/Localized | Yes/From Indentation
(4.0ft) | (1200)

30 5.0 6 12m 667 | Light/Localized | None/From Natural Flaw
4.01ft) | (1200) & Intercepted Indentation

31 5.0 15-16 12m 667 | Light/Localized | Yes/From Indentation
(4.0ft) { (1200)

32 50 15-16 12m 667 Light/Iocalized | Yes/From Indentation
(4.0ft) | (1200)

33 5.0 15-16 12m 667 | Light/Localized | Possible/From Indentation
(4.0ft) | (1200)

34 50 15-16 12m 667 | Light/Localized | Yes/From Indentation
(4.0ft) | (1200)

35 5.0 15-16 12m 667 | Light/Localized | Possible/From Indentation
(4.0ft) | (1200)

Another stirring impeller design which caused a high degree of axial flow in
cylindrical tanks was examined. The stirring speed was increased as high as possible with
minimal splashing of the hot liquid metal. This stirrer was also angled at approximately 20°
and placed off-center with respect to the cylindrical tank. The results of specimens 31
through 35 (Table 11) indicate the vigorous stirring action was very favorable. It was not
readily apparent that the primary crack propagation initiated from an artificial flaw after

preliminary examination of specimens 33 and 35. Though it was difficult to determine the
primary crack propagation the presence of several cracks indicated a more uniform quench
was obtained. It should also be noted that approximately 50 percent of all induced artificial
flaws had crack extension or were intercepted by a crack.

A drop height of 1.2 m (4.0 ft) was temporarily used for safety reasons and close
observation of the ball’s entry into the stirred hot liquid metal was made. Even though a
shield was used, close observation revealed that the entry point of the ball into the quench
liquid (as denoted by the splash) was not consistent and the submersion time was varied.
However, the ball's immersion time was much longer in a “stirred” liquid metal as
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compared to that of balls dropped into static liquid metal. The increased immersion time
was due to the down draft caused by the stirring paddle. This action promoted convective
heat transfer as the primary method for extracting heat from the bearing ball; however, the
entry point of the ball was critical for consistent heat transfer when comparing the heat
transfer rate from one ball to another.

Thermal proof test development was continued using forced convection rather than
quasi-static conduction. Results strongly indicated that use of forced convection heat
transfer was a very promising in meeting two requirements:

(1) to produce a more uniform thermal stress gradient within the bearing ball, and
(2) to cause crack propagation only from the largest near-surface flaw; namely,
induced artificial flaws by indentation.

As shown in Table 12, specimens 36 through 45 strongly indicate that the transient
thermal gradient can be eliminated by using a rapidly stirred liquid metal bath and an

increased drop height. The drop tower was completed and was used to obtain these results.

TABLE 12

UPDATED RESULTS OF THERMAL QUENCH PROOF TESTING USING A
STIRRED QUENCH BATH, THUS INDICATING THE STIRRING ACTION OF
THE QUENCH BATH IS NEEDED TO PROMOTE UNIFORM QUENCHING

Drop
Specimen| Load, | Number | Height, AT, Indent/Crack Extension
Number | kg |of Indents| m (ft) °C (°F) Oxidation
36 50 1 203m [667(1200)| None [Yes/From Indentation
(6.67 ft)
37 50 1 2.03m |667(1200)] None [Yes/From Indentation
(6.67 ft)
38 5.0 1 2.03m {667 (1200)| Light [None/From Natural Flaw &
(6.67 ft) Metallic | Did Not Intercept Indentation
39 5.0 1 2.03m {667 (1200) Light [Yes/From Indentation
‘ (6.67 ft) Metallic
40 5.0 1 203m [667(1200)| Light [None/From Natural Flaw &
(6.67 ft) Metallic | Did Not Intercept Indentation
41 50 1 2.03m |667(1200)] None {Yes/From Indentation
(6.67 ft)
42 50 1 2.03m |667 (1200) None [Yes/From Indentation
(6.67 ft)
43 5.0 1 2.03m |667 (1200) Light [Possible/From Indentation
(6.67 ft) Metallic
44 50 1 2.03m |667(1200)| Light [Yes/From Indentation
(6.67 ft) Metallic
45 5.0 1 2.03m | 667 (1200) Light [Yes/From Indentation
(6.67 ft) Metallic
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The drop height used was 2.03 m (6.67 ft). Both the tube furnace and drop chute use argon

gas to prevent oxidation of the hot ceramic ball before it enters the liquid metal bath (Figure
20).

Tube Furnace Type K Thermocouple

1 Differential Thermocouple
/— Meter

Argon Gas
AUnes

Ceramic Bearing
Ball

Inert Gas
Chute

Argon Flow Regulators
For Chute and Tube

Stirring Furnace

Motor

Ligquid Metal

Quench Bath Type K
Thermocouple

Hot Plate

Quench Bath
Reference

Figure 20. Final drop tower designed and built to quench bearing balls.

444 DROP TOWER STIRRER

A drop tower, approximately 2.4 m (8 ft) high, was designed and assembled to
accommodate an inert gas chute and an inert gas tube furnace. This step was made to better
control the experimental test parameters. The inert gas maintained a more consistent partial
pressure of oxygen, and the transfer time of the hot ball from the furnace to the liquid metal
bath was more consistent. The drop height was raised to increase the submersion depth and
time and to shorten the ball’s entrance time into the liquid. Because the transfer time was
more consistent, the temperature of the ball before entering into the quench bath was more
consistent. The liquid metal quench bath had a variable speed stirrer. A funnel was
incorporated to better control the ball’s entry point into the liquid metal quench bath.
Temperature control was maintained by utilizing a reference junction in the quench bath,
eliminating the need for an ice bath junction. A quartz muffle tube was used to heat the
bearing balls in flowing argon gas.

The specimens were tested at a thermal quench temperature AT of 667°C (1200°F).
One artificial flaw was placed on each ball using a 5 kg Vicker’s indentation load. The
liquid metal bath was stirred at constant angular velocity. The stirring paddle used cause a
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high degree of axial flow in cylindrical tanks. The stirrer (Figure 20) was angled
approximately 20° from the vertical axis and placed off-center to prevent the formation of
the typical centered vortex from the stirring action. It was determined that the vortex was
unpreventable using a clockwise stirring motion. The stirring direction was reversed and
the vortex was eliminated; however, the fluid motion caused the bearing to float to the
surface more rapidly. The final stirring direction used was clockwise; this method caused
an off-center vortex that enhanced immersion time. Also, the splash plume collapsed
quickly to engulf the bearing ball to develop a quasi-uniform thermal quench.

Specimens 36 through 40 were used to evaluate the new drop tower and furnace.
The thermally quenched bearing balls were examined for crack propagation from the single
indentation flaw after quenching. Three specimens (36, 37, and 39) showed crack
propagation primarily from the one and only indentation flaw. The other two specimens (38
and 40) had crack propagation from natural flaws. Crack propagation from the indentation
flaw did not occur in these latter two specimens because of an inconsistent entry point in the
liquid metal.

The consistency of the ball's entry point into the liquid metal was improved (Figure
20) by using a metal tube (12 in long with a 0.5 in inner diameter) attached to the end of the
funnel. The long tube acted to better guide the falling hot bearing ball. Five specimens (41
through 45) were thermally quenched using this technique. The results indicate four of the
five tested balls had crack extension, primarily from the ball's only 5 kg indentation flaw
(Figure 21). Though specimen 43 showed crack extension it was inconclusive, but highly
probable, that crack extension was primarily from the single indentation flaw. The flaw
position dependency was reduced using this system. The inert gas furnace and chute
produced a cleaner ball after quenching.

Figure 21.  Crack extension from an indentation flaw is attained from increased drop
height and rapid stirring of the liquid metal quench bath.




4.4.5 Inspection

Bearing balls were subjected to a cleaning process before and after testing. The
balls were cleaned individually in a series of steps: an initial acetone wash, water-based
detergent wash, water rinse, alcohol rinse, and a final acetone wash. The balls were cleaned
individually, never as a batch. This washing process minimizes drying rings or spots on the
balls. Individual balls were soaked in dye penetrant; however, the water-based dye
penetrant was unsuccessful. The balls then were examined by a low-power stereo
microscope with an optical fiber light pipe. A halogen light source luminated the ball at a
very low incidence angle.

4.4.6 Failure Analysis

Several bearing balls were examined by scanning electron microscopy (SEM)
analysis to study the fracture patterns and identify the fracture origin from the thermally
induced circumferential stress. Several other balls were cut to two-third of the ball’s
diameter (Figure 22). The cut was opposite the identified fracture origin. The balls were
then loaded in compression where the plane of the cut in the ball was perpendicular to the
loading axis. Initially, several balls were damaged during the loading process. The
damaged area included the fracture origin. This problem was solved without further
damaging the fracture origin by using a recessed loading fixture. Analysis indicated the
thermal proof test produces a circumferential tensile stress which causes crack arrest as deep
as 2 mm (Figure 23). Optical analysis indicated the liquid metal was also found on the
fracture surface.

The plane in which the thermally-induced crack propagated was extended to reveal
liquid metal penetration as deep as 2 mm (Figure 23). The approximate 2 mm deep

Force F

Figure 22. Method to split open a quenched bearing ball with a thermally induced crack
from a surface or near-surface flaw.
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Figure 23.

arrest depth with thin foil remnants of the cooled liquid metal attached to the
fracture surface. The 2 mm crack arrest depth was found on several
compression split balls.

demarcation delineates crack arrest due to the thermally induced crack extension. A
preliminary conclusion was made by assuming approximately 0.25 of the 2 mm
demarcation [or 0.5 mm below the surface of a 11.11 mm (7/16") diameter ball] was the
depth of the thermal stress pulse from the liquid metal thermal proof test. Interestingly, the
stress analysis of the ball showed that the combined compressive tangential and radial
stresses support the crack arrest in the ball. The observed normalized radius for crack arrest
was 0.65 mm. It was not known if there was sufficient stress analysis information from
Figures 20 and 21 to determine a correlation with the observed crack arrest line in the ball.

The fracture surface shown in Figure 23 is typical of a thermally-induced crack
process. The classic macroscopic features of mirror, mist, and hackle are nonexistent.
Classic fracture mist and hackle features are typically found when the crack propagation
speed is sufficient to interact with the sonic velocity. These classic features are generated
when the crack plane interacts with sound waves generated from the fracture process.

The analysis was continued on specimen 49 using SEM and energy dispersive
analysis (EDA). Figure 24 is an SEM photomicrograph which shows the bismuth-tin
quench bath liquid metal as bright regions. The small dark gray region is organic material.
A higher magnification of the fracture surface is shown in Figure 25 near the ball's surface.
As before, the bright region is the binary metal and the dark gray region is organic material.
The organic material originates from the peanut oil used to prevent oxidation of the metal.
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Figure 24.

Figure 25.

Low- magmﬁcatlon SEM photomlcrograph of a spht bearmg ball exposing
the thermally induced fracture surface. The bright phase is the bismuth-tin
quench bath liquid metal and the small dark gray regions are organic
material (burnt peanut oil).

Fa49 Sy ; . 1
High-magnification SEM fractograph of Flgure 24. A close examination of
the smooth bearing ball surface clearly reveals a crack perpendicular to this

fracture surface. The bright region is bismuth-tin; the small dark gray regions
are charred organic material.
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In specimen 49, a region (Figure 26) approximately 2 mm below the bearing ball's
surface was examined. This region was identified as the crack arrest line by optical analysis
(Figure 23). As shown in Figure 26, the region near the crack arrest indicates the presence
of bismuth-tin on the fracture surface at this depth. The bright phase of the binary metal
highlighted the crack line and the filled crack opening. EDA analysis further confirmed the
presence of bismuth-tin in this region, as shown in Figure 27.

Figure 26.  High-magnification SEM photomicrograph approximately 2 mm below the
ball’s surface at the crack arrest line. The bright bismuth-tin highlights the
filled opening of the crack line. The binary metal is also attached to the
fracture surface at this depth.

As mentioned before, there was an absence of the classic fracture demarcations,
such as mirror, mist, and hackle, indicating the fracture process is considered slow due to
thermal loading. This is further confirmed as shown in Figure 28 where intergranular
fracture is the dominate crack propagation mode. Fast crack propagation would have
caused cleaved grains. Classic mist and hackle formation only occurs when the crack
propagation velocity is fast enough to interact with approximately 60 percent of the
material's sonic velocity. Further detailed fracture analysis is necessary to determine if other
fracture features exist.

Liquid metal penetration was further confirmed by SEM analysis for the as-
proof-tested balls (Figures 29 and 30). The liquid metal shows a high backscatter [as
shown by EDA (Figure 31)] which makes the cracks appear bright (Figures 29 and 30).
The black portions in the cracks are either the crack opening or organic material in the
crack. The solidified quench metal in the crack explains why it was difficult to use dye
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EDA spectrum of Figure 26 which indicates the presence of bismuth-tin at this
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Figure 28. High-magnification SEM photomicrograph indicating the crack propagation

mode is primarily intergranular.
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Figure 29.  Low magnification of a crack branch from the primary crack site. The bright
phase represents liquid metal that has infiltrated the crack opening during the
transient quench cycle. The quench liquid was frozen in the crack openings.
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Figure 30.  High magnification of Figure 29 indicating the penetration of the liquid metal
into the crack.
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Figure 31.  EDA plot indicating that the bismuth-tin liquid metal quench is inside the
bearing ball’s crack.

penetrant to assist in the detection of cracks. The metal in the crack prevented the dye
from penetrating the crack for crack detection. Impurities were detected in the main
crack (Figures 29 and 30) as iron and nickel, as indicated by EDA (Figure 32).
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Figure 32. EDA analysis plot indicating iron- and nickel-based processing impurities
located at the vicinity of the main crack site on the bearing ball.
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44.7 Weibull Plot of Quench Temperature AT

The thermal quench system was modified (Figure 33) to allow approximately 15
balls to be tested per hour, compared to the former system’s time requirement of five tested
balls per hour. Thermal quenching of 11.11 mm (7/16”) diameter NBD-200 bearing balls
was continued without any induced artificial flaws. Argon gas was used to prevent
surface oxidation of the bearing ball.

Argon Gas Inlet
Ceramic Bearing Balls

L Type K Thermocouple

Ball Stop and Ejector

Figure 33.  Diagram of modified quartz muffle tube for multiple heating of bearings,
releasing one bearing ball at a time for quenching.

Two lots (933020.00 and 922563.03) of two grades (5 and 10) of NBD-200
bearing balls were evaluated from 611 to 778°C (1100 to 1400°F) in the thermal quench
drop tower. The balls were optical inspected before testing. Bearing balls that passed
optically inspection were used. Typical criteria for passing the optical inspections were:

(1) no flaws found,
(2) no scratches to very light scratches, and
(3) uniform to slight nonuniform color.

Subgroups of 20 to 50 balls each were quenched at six temperatures. After thermal
quenching, each ball was cleaned and examined for crack extension. Florescent dye
penetrant was not used because of the cracks filling with solidified liquid metal.
Observations of the failed balls from the thermal quench indicate the fracture origin does
not correlate well with the surface flaws as identified by the pre-inspection. The quantity
of balls tested at each temperature and the quantity that showed crack extension are
tabulated in Table 13. The percent failure was determined by the number of balls with
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crack extension, as compared with the number of balls thermally quenched. These results
are presented in Figure 34 as a Weibull plot or reliability factor as a function of thermal
quench temperature AT.

TABLE 13

RESULTS OF THERMAL QUENCH TEST IN ARGON AS A
FUNCTION OF TEMPERATURE AT

Percent | Quench | Quench
Quantity | Quantity| (%) | Temp-, AT | Temp., AT| Ball
Tested | Failed | Failure | °Kor °C °F Grade Oil Lot Number
50 1 2.0 611 1100 5 peanut 933020.00
30 19 63.3 667 1200 10 peanut 922563.03
20 2 10.0 667 1200 5 peanut 933020.00
50 45 90.0 722 1300 5 peanut 933020.00
50 48 96.0 778 1400 5 peanut 933020.00
30 11 36.7 667 1200 5 silicone | 933020.00
49 3 0.6 639 1150 5 silicone | 933020.00
50 32 64.0 694 1250 5 silicone | 933020.00
Combined Subsets
933020 or
50 21 42.0 667 1200 |10or5| peanut 922563.03
peanut or
50 13 26.0 667 1200 5 silicone | 933020.00
peanutor [ 933020 or
80 32 40.0 667 1200 10 or 5| silicone 922563.03

In Figure 34, linear regression was used for Grade 5 bearing ball data only,
regardless of the type of oil used. This straight line clearly demonstrates that changing
the oil produced a negligible effect. The straight-line correlation clearly indicates that the
flaw size, shape, and distribution are extremely uniform. Since the flaws are uniform for
Grade 5 balls, a thermal quench temperature can be chosen for a specific degree of
reliability. However, it would be only be specific to Lot 933020.00.

In the linear regression analysis, the only Grade 5 data point not used was at
778°C. This data point was not used because a transition exists above 750°C where a
direct correlation is no longer maintained. At 750°C and above, the reliability factor
approaches 100, which cannot be exceeded.

The y-axis in Figure 34 is labeled the reliability factor. This factor is the
assessment of the quality of the bearing ball after the thermal quench. The results of the
thermal proof test show these balls to have a specific flaw size, shape, and/or distribution.
If a high probability of detection is chosen, the thermal proof test would apply a higher
proof load. If the bearing ball survives the proof test, the probability of having a critical
crack is low. Therefore, these balls could be used in an application that would require
high reliability. However, when choosing a high reliability factor, there is the potential
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Figure 34.  Weibull plot of the thermal quench test temperature for NBD-200 11.11 mm
(7/16”) diameter bearing balls.

for increased expense due to the rejection of a large quantity of balls to obtain this high
reliability.

As demonstrated in Figure 34, the 95 percent confidence limit band is narrow,
which indicates the change from peanut oil to silicone oil, as the liquid metal oxidation
protective layer, is negligible.

Notably the 30 Grade 10 balls are considerably outside the confidence band.
Grade 5 is Lot Number 933020.00; Grade 10 is Lot Number: 922563.03. Both lot

numbers were traced by the manufacturer and were reported to be the same powder and
processing batch.

The next task would require the evaluation of these proof tested balls in an actual
rig test. Before this is done, the level of flaw detection must be choser. To make the
situation more difficult, baseline thrust-loaded RCF tests have not failed any balls with
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artificially-induced flaws by Vicker’s indentation. The Vicker’s indentation loads were
reported to be as high as 3 kg with test suspensions at 500 hrs. Therefore, it is very
difficult to decide what is an appropriate level of detection to scan for flaws equal to or
greater than the intolerable flaw size. The level of detection is associated with the
thermal quench temperature to detect these intolerable flaw sizes.

4.4.8 Evaluation of Optically Rejected Bearing Balls

Approximately 100 bearing balls (Grade 5) that failed the optical inspection were
set aside for thermal quenching at three temperatures. The fraction of optically rejected
balls that would fail from the thermal proof test was unknown. The results of the tested
rejected balls would provide insight and an assessment of the validity of optical
inspection. Prior results indicated the reason to reject a ball by optical inspection is not
the flaw origin.

Thermal quenching of 11.11 mm (7/16") diameter NBD-200 (Lot No. 933020.00
Grade 10) bearing balls continued without any artificially-induced flaws. This group of
101 balls was rejected from optical inspection. The criteria for these balls to be labeled
as rejected by optical inspection were:

(1) a scratch longer than 100 pm,

(2) a deep scratch (subjective),

(3) a sintered green-state surface-crack,

(4) a crack (lateral or compression contact “C” shape),

(5) a scuff or scratch wider than 50 pm,

(6) an inclusion larger than 50 pm, and

(7) an unusual discolored region.
This group of 101 balls was divided into three subgroups. The three subgroups were

thermally quenched at a AT of 611, 639, and 667°C (1100, 1150, and 1200 °F,
respectively). The primary objectives of testing these rejected balls were:

(1) to determine if the thermally induced stress would cause the observed flaws to
propagate as cracks, and

(2) to determine the frequency of false rejection from optical inspection.

Updated results of the percentage failed as a function of the thermal quench
temperatures are presented in Table 14 and Figure 35. Approximately 18 percent of each
subgroup failed from the thermal quench of a AT of 611 and 639°C (1 100 and 1150 °F,
respectively). At a thermal quench temperature, AT, of 667°C (1200 °F), the results are
within the 95 percent confidence band. The fracture origin site was located for each
quenched rejected ball and compared to the notes from the optical inspection. Most of the
balls (over 90 percent) that failed at these three quench temperatures did not correlate
with the identified flaw as found by optical inspection. Crack propagation from the
thermally-induced stress avoided most of the observed flaws. When the crack path did
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intersect with the observed flaw, it was not the primary crack, but a secondary crack
branch.

TABLE 14

UPDATED RESULTS OF THERMAL QUENCH TEST AS A
FUNCTION OF TEMPERATURE AT

Quench | Quench
Quantity| Quantity| Percent (%)| Temp. AT,| Temp. Ball
Tested | Failed Failure °Cor °K { AT, °F | Grade Oil Lot Number
50 1 2.0 611 1100 5 peanut 933020.00
30 19 63.3 667 1200 10 peanut 922563.03
20 2 10.0 667 1200 5 peanut 933020.00
50 46 92.0 722 1300 5 peanut 933020.00
50 49 98.0 778 1400 5 peanut 933020.00
30 11 36.7 667 1200 5 silicone 933020.00
49 3 0.6 639 1150 5 silicone 933020.00
50 32 64.0 694 1250 5 silicone 933020.00
933020.00 &
50 21 42.0 667 1200 [10or5 *| peanut 922563.03
peanut or
50 13 26.0 667 1200 5* silicone 933020.00
peanut or | 933020.00 &
80 32 40.0 667 1200 {10 or 5 *| silicone 922563.03
33 # 6 18.2 661 1100 5 silicone 933020.00
35# 6 17.1 639 1150 5 silicone 933020.00
33 # 9 27.3 667 1200 5 silicone 933020.00
peanut or
9 3 333 667 1200 10 * silicone 922563.03
peanut or
10 10 99.0 722 1300 10 * silicone 922563.03
69 1 1.4 639 1150 10 silicone 932766.03
205 10 4.9 639 1150 10 silicone 932766.02

* Combined subsets of data to create a larger database for analysis.
# Part of 101 ball set to determine the correlation of crack propagation from optically observed flaws.

The test data of the rejected balls at a AT of 611 and 639°C (1100 and 1150 °F,
respectively) clearly indicate a higher ratio of failure compared to the linear regression
line. Only approximately 2 percent failure was anticipated at the lowest quench
temperature, but 18 percent was observed. Ideally, all the optically identified flaws
should have been the failure source, but they were not. The observed higher ratios of
failure at these two lower quench temperatures cannot be readily explained. Thus optical
inspection alone is insufficient to screen ceramic bearings.
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Figure 35. Final Weibull plot of data.

Many of the rejected balls that were optically identified to have a major type of
flaw did not fail from these flaws. With the limited number of tests, there is an
inclination to state that optical inspection has a high percentage of “false calls.”
Because of the false call, reliable balls are rejected. Of course, the method of inspection
chosen is dictated by the actual application. It would be interesting to determine if a
correlation exists for rejected balls from other inspection techniques, such as ultrasonics,
laser surface scattering, or surface resonance.

The next question is, “What would be the results if these balls were not optically
screened or censored, and were part of the original population undergoing random testing
to generate a Weibull plot?” It could be hypothesized that the Weibull slope would be
lower. A low Weibull slope could describe the bearing ball population with a broad
distribution of flaws. Likewise, a high Weibull slope may indicate a uniform distribution
of flaws. If the characteristic quench temperature is high, flaw size is small and vice
versa. If the data do not support a linear correlation on a Weibull plot, it is possible that a
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“knee” in the curve could be useful to predict the critical thermal quench temperature to
screen critical surface and sub-surface flaws.

4.5 RIG TESTS: EVALUATION OF THERMAL PROOF TEST

The final phase was the demonstration of the reliability to sort out bearing balls
that might lead to premature failure. From the existing data, a mutual decision was made
with NAC to choose a probability of detection level in which 10 percent of the balls
would exhibit crack extension from flaws. This value was chosen because, throughout
the course of the program, there was no silicon nitride bearing ball failure during the
baseline RCF tests. With no failures, a level of reliability is unknown. No failure was
recorded even after the balls were found to have surface flaws that passed optical
inspection prior to testing. A low rejection rate ensured that only bearing balls with
extremely large flaws would propagate as cracks when thermally quenched. The balls
that pass inspection would essentially have a limited truncation on the flaw population
and would have flaw sizes just below the limits of detection.

In this evaluation, two lots of NBD-200 silicon nitride balls were provided for
screening before RCF testing; these lots were designated as 932766.03 and 932766.02.
The lot quantities supplied were 69 and 205 balls, respectively, of standard 11.11mm
(7/16”) nominal diameter. Initial thermal quench tests were conducted at 639 and 722°C
(1150 and 1300°F). The initial tests used 10 balls from production lot 932766.02 for each
of the two test temperatures. The purpose of these tests was to establish a relative level of
thermal quench reliability with the existing database.

At a quench temperature of 639°C (1150°F), one ball failed: at a quench
temperature of 722°C (1300°F), 10 balls failed. These results were not overwhelmingly
convincing; however, a mutual decision was made with NAC to continue cautiously to
assure a minimum delivery of bearing balls for full rig testing by rolling contact fatigue.
The remaining tests were continued at 639°C (1150°F), where 68 of 69 balls of one lot
passed the thermal proof test and 195 of 205 balls survived for the other lot. These tested
balls were pre- and post-inspected optically without florescent dye penetrant for crack
detection.

The proof-tested lot was returned to NAC for dimensional and surface inspection.
The two lots of balls were subdivided into lots of 28 balls (one bearing assembly) for rig
testing at an increased RCF stress of 2.93 GPa (425 ksi). The increased contact fatigue
stress was chosen to guarantee failures before the 500 hour cut-off limit to assess the
level of reliability.

Four balls failed during the rig test: two from NDE inspection and two from the
thermal proof test inspection. Of the two that failed from the thermal proof test
inspection, it was reported that one failed from a spall. This failed ball did not damage
the other bearing balls in the bearing assembly.
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The second failure in the rig test that was thermally proof tested was the most
interesting. It was reported that the ball failed early during rig loading by splitting during
thermal proof testing due to a crack that was not detected during optical inspection from
the thermal proof test by optical inspection. The fracture surface indicated liquid metal
from the quench bath had infiltrated into the crack. Thin metal deposits were found on
the fracture surface. The crack extended approximately 180° around the circumference of
the ball. Thus, a crack approximately 15 mm in length on a 11.11 mm diameter bearing
ball was not optically seen. Clearly, optical inspection should be used only as a
supplemental form of inspection. Optical inspection should not be the only standard
method of inspection.

An ultrasonic method of detection could be used following the thermal proof test.
Although ultrasonics are extremely sensitive, there are still problems in identifying very
small flaws (less than 50 um). Incorporating the ultrasonic method with the thermal
proof test could allow detection of intolerable flaws that propagate to a size within the
resolution of this technique (e.g., nonresonant frequency of the ball).

4.6 SUMMARY AND CONCLUSIONS: THERMAL PROOF TEST
DEVELOPMENT

More than 700 NBD-200 bearing balls were evaluated to determine the frequency
of crack extension from intrinsic flaws as a function of the thermal quench temperature
AT. The observed frequency of crack extension as a function of the thermal quench
temperature AT was described by a Weibull distribution. A level of reliability was
chosen by using the prescribed thermal quench temperature. However, preliminary
results indicated the Weibull plots are unique for each manufactured lot.

Because a Weibull distribution can be used to describe the probability of crack
extension as a function of thermal quench temperature, it would be interesting to study
the Weibull slope as a function of other parameters. The parameters to describe the
Weibull function can be used to study powder lot, powder preparation, densification,
grinding, and final polishing of bearing balls.

There is the potential to use bearing balls as test specimens for quality control.
The sample size is small and economical. If a typical production yield is 1000 finished
bearing balls, a small percentage of the lot (approximately 50 balls) could be used. This
small quantity would be used for thermal quenching to quantify the quality of the lot by
possibly using one thermal quench temperature. A few balls with crack extension from
intrinsic flaws would be considered a high-quality lot for critical or man-rated
applications. Many balls with crack extension would be labeled for noncritical
applications.

Tt would be interesting to study the Weibull distribution as a function of
production lot before the above mentioned idea is implemented. A low Weibull slope
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could describe the bearing ball population with a broad distribution of flaws. Likewise, a
high Weibull slope could indicate a uniform flaw distribution for high predictability and
reliability. If the characteristic quench temperature is high, flaw size is small. Likewise,
if flaw size is large, the characteristic quench temperature is low. If the data do not
support a linear correlation on a Weibull plot, this "knee" in the curve could be beneficial.
It may represent the threshold thermal quench temperature to screen surface and
subsurface flaws, which would be ideal for high reliability.

A test was conducted to determine the reliability of the thermal quench proof test.
More than 250 balls were evaluated and returned for rig testing at higher thrust load RCF
tests. The detection of crack extension after the thermal proof test needs to be improved.
The ultrasonic detection method may be useful for identifying bearing balls with the large
crack extension from intolerable flaws.

4.7 REFERENCES FOR SECTION 4

IV.1  Lucek, John W., & Hannoosh, James G., Private communications, 1987.




SECTION 5
PROGRAM SUMMARY AND CONCLUSIONS

A thermal quench proof test was developed for nominal 11.11 mm (7/16”)
diameter NBD-200 silicon nitride bearing balls. The thermal proof test is based on the
Griffith criteria from fracture mechanics. This criteria assumes crack propagation will
only occur when the applied tensile stress G4 is equal to or greater than the strength Gerit
as dictated by Griffith flaw size a.q and geometry. This tensile stress is induced by rapid
thermal cooling to cause a strain contraction. By controlling the thermal quench
temperature AT, only flaws of a specific minimum size a or larger that cannot be readily
detected will propagate to a size that can be detected by standard NDE techniques.

Thermal and stress analysis modeling were used to assist in the development of
the thermal proof test for bearing balls. Numerical thermal modeling identified that
conduction alone is insufficient for the required heat transfer to generate the temperature
profile that can produce circumferential tensile stress sufficient to induce crack
propagation. A combination of conduction and convection heat transfer was necessary to
generate the thermal and stress profile in a spherical bearing ball. FEA and closed-form
stress analysis were used to determine the apparent stress profiles in a spherical bearing
ball during a thermal quench. The modeling demonstrated that a minimum of 50 to 100
msec is required to develop a global and uniform thermal stress profile for a thermally
quenched bearing ball.

The thermal proof test utilized a liquid metal quench bath to provide the high heat
transfer necessary to produce the required temperature gradient. The liquid metal has a
low melting point that allows for a lower temperature exposure of the bearing balls to
minimize any material degradation. The liquid metal is chemically inert to the bearing
material, is low in cost, has a low vapor pressure, and is environmentally safer than other
metals, such as mercury, lead, and cadmium.

A thermal quench drop tower was constructed to prevent thermal oxidation of the
balls before quenching. The drop tower allowed hot bearing balls to free fall into a stirred
liquid metal quench bath. This allowed the buoyant ceramic bearing balls to stay
submerged to develop the uniform thermal stress profile required to cause crack
propagation of flaws. Preliminary work proved the oxidation of silicon nitride bearing
balls made them more resistant to thermal quenching. Further study of this effect of an
oxidation heat treatment as a method of increasing the reliability of silicon nitride bearing
elements is required.

From the thermal quench study of more than 700 NBD-200 bearing balls, the
observed frequency of crack extension from intrinsic flaws as a function of the thermal
quench temperature, AT, was described by a Weibull distribution. Results indicated the
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Weibull plots are unique for each manufactured lot. A level of reliability was chosen
using the prescribed thermal quench temperature.

It would be interesting to study the Weibull slope as a function of powder lot,
powder preparation, densification, grinding, and final finishing. If a typical production
yield is 1000 finished bearing balls, a small percentage of the lot could be used for
thermal quenching to quantify the quality of the lot. A low Weibull modulus would
identify the bearing ball population with a broad distribution of flaws. Conversely, a high
Weibull modulus would indicate a uniform distribution of flaws resulting in a high
confidence lead for predicting lifetimes. If the characteristic quench temperature is high,
the flaw size is small, and vice versa. If the data does not support a linear correlation on a
Weibull plot, it is possible that an anomaly in the curve could provide beneficial
information that would lead to the prediction of a threshold thermal quench temperature
required to screen critical surface and subsurface flaws, which would result in higher
reliability.

A robustness test was conducted to determine how reliable the thermal quench
proof test was. More than 250 balls were evaluated and returned to NAC for rig testing at
a higher thrust load RCF test. The results showed promise because the thermal proof test
indicates
it is slightly more than comparable to NDE inspection. The assessment or merit of this
conclusion is dependent on the statistically significance of this small-scale robustness
test.

The reliability of silicon nitride bearing balls might be improved by combining
two techniques. The thermal proof test would be used prior to ultrasonic inspection to
increase pre-existing flaw sizes. The sensitivity of ultrasonic inspection could then detect
the larger cracks.
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APPENDIX A

HEAT CONVECTION AND CONDUCTION
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Al

HEAT CONVECTION AND CONDUCTION MODEL

Starting with the general heat conduction equation:

1 dL(r) _2dT(0 d’T,(r,t)

O<r<r A.la

o. dt r dr dr? i e
2

1 d'I‘l(r,t)zg_d’I‘,(r,t)_i_d Tl(f’t) I, <r<r, (A.1b)

where a is thermal diffusivity, defined by o0 = £; p is the density; and c, is the specific heat
pc

of the material.

Al1l

Initial and Boundary Conditions
The initial conditions are:
att=0 T.(0,r)=T,
att=0 T.(0,r) =T,

metal temperature. The boundary conditions are:

atr=r, T.(t,5,) =T, (t,r,)
atr=r, o ILn) _ d(ts)
dr dr
At later times for convection controlled heat loss:
aTc(t’r ) aT (t,r )
ar=r, kg =k TEEER(T-T)

where r and r, represent, respectively, the radius and the outer radius of the bearing ball.

Subscripts ¢ and 1 are for the ceramic and liquid, respectively; k is the thermal conductivity;
and h is the convection heat transfer coefficient.

A.1.2

|
where, is the initial temperature of the ceramic bearing balls and T, is the initial liquid

Dimensionless Parameters

- T(I’, t)c,l - Tlo
o Tco _Tlo (A2)
Tr
(=L . (A.3)
L,

Rearranged, the above equation becomes:

T= 9c,l (Tco - T;o ) + Tlo ’ (A4)




The normalized radius, derived with respect to the radius is:

or=r10( . (A.5)
By deriving Equation A.4 with respect to time and radius:

aT 06

—=(T,~T,)— A.6

at ( co lo) at ( )

aT

—=(T : A7

o (T, — ) C (AT)
Rewriting Equation A.7 using Equation A. 5 results in:

of _T,-T, a0 (A.8)

ar I, BC

Deriving Equations A.7 and A.8 with respect to the radius produces:
9T _9|T,—T, 98
o’ ar rb E)C

T T,-T, 9 {a_e}

or

o’ 1, 1,009
T T -T, 0’0

B Yt . A
or? 2 g (A5

Using Equations A.6, A.8, and A.9 to evaluate Equations A.la and A.1b results in:
1 00, 2(T,-T.,)90, (T, —T,) 9%
— (T._-T. c -~ ¢co Io € 4o Io c
o, T 7577 r, o 2 o
_!.. ( )ai _Z.(Tco _Tlo)_agl__'_(Tco_Tlo) azel
o r 1, oC . &
106 _ 2906 1 1.9%8,
o, at C BC 7 aC?
1 _8& 2 89 826
o ot Lo o

More simplification to get the dimensionless governing system for the ceramic bearing ball
and the liquid metal produces:

08, 2 08, azec

_aT C X acz _ (A.10a)

00 200, 9°0

ERE [c o ac;] | A
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o
Equations A.10a and A.10b can be rearranged using _, = < to produce:

L
0, 2y, 90 0’6
= be e ° A1
00, 2u, 98, %6,
——— —_— . A.11b

The dimensionless initial and the boundary conditions can be written as:

Initial Conditions:

att=0 0. (0,0)=1
att=0 0, 0,5)=0 .
Boundary Conditions:
at (=1 0, =9,
a0 00
t {=1 —+ =B
e TR
Where B=—k—’ .
kC
Later, when the thermal boundary is roughly fixed
a0 a0
B—L-Bi(0;) =—=
ar DO

where B = % and Bi is the Biot number where Bi = 2% _

C c

A.2 FINITE DIFFERENCE METHOD

The finite difference method is used to solve the governing system for both the
ceramic bearing ball and the liquid metal. The forward difference can be used to write the
derivation as:

89 ejm+ "’ejm
0’0 6] 20 +¢!
T mt] AC? = (A.13)

The central difference approximation can be used to write the governing system as:

equ,-1 - ef-n 2“’ e;i-n+1 - egn ein-r—l — zegn + e}irl~l
= — <+ .
At 4 AL AL?

Rearranging Equation A.14 produces:

(A.14)
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i _@l i _npi j
ejn;1=egn+zm%[h&-9ﬂ]+mu[em“ "’A"C';““em“} (A.15)

for both the ceramic bearing balls and the liquid metal. The second boundary condition can
be written as:

kc em+1 _em — k] e12 "911
AQ AQ
9m+1 _em =B 912 —9,1
AL AT
where B = -15'—
k

and letting let 6, =0, =96,

where 6, is boundary dimensionless temperature, then rearranging terms in
6,-6,=B(6,-6,)
6,+B6,=6_+B0O,

0. = 0,+B6, .
*  1+B
Later, when the convection controls the heat loss, the boundary condition at (=1is:
eb —em = Belz _eb -‘Bieb
AL AL
where B = ﬁ

[

and Bi is the Biot number

where Bi = __h{,_,_,
-k

c

rearranging terms resulted in
8, 6, B6, BO,

b __m __—"12 —Bif
AL AL AL AL
6, BO, ... BO, 0
Zb =7k L Bjf, = —2 +-m
AT AL T AL A

6, +B6, +A{Bi6, =B6,, +0,,
6, (1+B+A{Bi)=B6, +6,,

— BelZ +em
* (1+B+ALBi)
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APPENDIX B

FORTRAN COMPUTER CODE
FOR TEMPERATURE PROFILE OF A QUENCHED BALL
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oNoNe!

S

oo Ke!

oNeNe!

REAL THC(1000000), THL(1000000),THB

REAL T,DT

IMPLICIT REAL (A-HO-Z)

REAL MUC,BETTA,XIC(3850)

REAL DXI,MUL,ALPHAC,ALPHAL,RB,KC,KL,DR,DXIC,DXIL,XIL(1600)

SETTING THETAL AND THETC TO ZERO

DO 2 1=1,200
THC)=0.0D0
CONTINUE
DO 4 K=1,250
THL(K)=0.0D0
CONTINUE

NUMBER OF CERAMIC DIVISIONS

=400

NUMBER OF LIQUID DIVISIONS

L=1600

NUMBER OF TIME STEPS
N=1000000

LIQUID CONDUCTIVITY.

69




NN oNeNe! oNeoXe! oNoNe! Q0N oNoNe!
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=20.934D0

LIQUID DIFFUSIVITY.

ALPHAL=1.215D-5

CERAMIC CONDUCTIVITY

KC=19.5014

CERAMIC DIFFUSIVITY

ALPHAC=8.67D-6

COMPUTING BETTA

BETTA=KL/KC

GIVING RADIUS OF THE CERAMIC

RB=0.004D0
COMPUTE MUL
MUL=ALPHAL/(RB*RB)

COMPUTE MUC

MUC=ALPHAC/(RB*RB)
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C INCREMENT IN THE XI DIRECTION

C
DXI=1.0DO/M
C
C TIME INCREMENT
C
DR=RB/M
C
DT=(.20*DR*DR/ALPHAC)
C
C  INITIAL CONDITIONS
C
C LIQUID
C

DO 100 K=1,L+1
THL(K)=0.0D0
100 CONTINUE

C
C CERAMIC
C

DO 200 I=1,M+1
THCI)=1.0D0
200 CONTINUE
XIC(1)=0.0DO0
DO 10 I=2,M+1
XIC(D)=XIC(I-1)+DXI
10 CONTINUE
XIL(1)=1.0D0
DO 20 K=2,L+1
XIL(K)=XIL(K-1)+DXI
20 CONTINUE

SOLVING FOR THE TEMPERATURE AT TIME STEP J

annann
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oNoNoNoNoNe!

oNoNe!

O 000N

OPEN(1,FILE="1 MSEC ,FORM="FORMATTED’,STATUS="OLD")
OPEN(2,FILE="2 MSEC ,FORM="FORMATTED’,STATUS="OLD")
OPEN(3,FILE="3 MSEC ,FORM="FORMATTED’,STATUS="0OLD")
OPEN(4,FILE="5 MSEC ,FORM="FORMATTED’,STATUS="OLD’)
OPEN(5,FILE="10 MSEC’,FORM="FORMATTED’,STATUS="OLD")
OPEN(6,FILE="50 MSEC’, FORM="FORMATTED’,STATUS="OLD’)
OPEN(7,FILE="100 MEC’, FORM="FORMATTED’,STATUS="OLD’)
OPEN(8,FILE="200 MSEC’,FORM="FORMATTED’,STATUS="OLD")
OPEN(9,FILE="500 MEC’ , FORM="FORMATTED’,STATUS="OLD’)
OPEN(10,FILE="1 SEC,FORM="FORMATTED’,STATUS="OLD")

DXIC=DXI
DXIL=DXI
T=0.0D0
H=300

DO 300 J=2,N

THETTA AT THE BOUNDARY
DURING THE INITIAL TRANSIENT PHASE

WHER THE THERMAL BOUNDARY LAYER IS GROWING.

THB=(THC(M)+BETTA*THL(2))/(1+BETTA)

LATER, WHEN THE THERMAL BOUNDARY LAYER IF ROUGHLY FIXED

BI=H*RB/KC

THB=(THC(M)+BETTA*THL(2))/(1+ DXT*BI+BETTA)
COMPUTING CERAMIC TEMPERATURE
THC(M+1)=THB

DO 400 I=M,2,-1
THC(I)=THCI)+2*DT*MUC*(THC(I+1)-THC(I))/

&(DXIC*XIC(I)+DT*MUC*(THC(I+1)-2.0D0*THC(I)+THC(I-1)
&)/(DXIC*DXIC)
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400 CONTINUE
THC(1)=THC(2)

IF ( J.EQ.434) THEN
DO 11 II=1,M+1
WRITE(1,*)XIC(II), THC(ID)
11 CONTINUE
ENDIF

IF(J.EQ.868)THEN
DO 12 II=1,M+1
WRITE(2,*)XIC(II), THC(II)
12 CONTINUE
ENDIF

IF(J.EQ.1302)THEN
DO 13 II=1,M+1
WRITE(3,*)XIC(II), THC(II)
13 CONTINUE
ENDIF

IF(J.EQ.2170)THEN
DO 14 I1=1,M+1
WRITE(4,*)XIC(II), THC(II)
14  CONTINUE
ENDIF

IF ( J.EQ. 4340) THEN

DO 16 II=1,M+1

WRITE(5,*)XIC(I), THC(II)
16 CONTINUE

ENDIF

IF (J.EQ.21700) THEN

DO 17 II=1,M+1

WRITE(6,*)XIC(I), THC(II)
17 CONTINUE

ENDIF

IF (J.EQ. 43400) THEN
DO 18 II=1,M+1
WRITE(7,*)XIC(IL), THC(I)
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; 18 CONTINUE
? ENDIF

IF ( J.EQ.86800) THEN

DO 21 II=1,M+1

WRITE(8,*)XIC(II), THC(II)
21  CONTINUE

ENDIF

IF (J.EQ. 217000) THEN

DO 22 I=1,M+1

WRITE(9,*)XIC(II), THC(II)
22 CONTINUE

ENDIF

DO 23 II=1,M+1
WRITE(10,*)XIC(II), THC(II)
23 CONTINUE

IF (J.EQ. 434000) THEN
ENDIF

COMPUTING THE LIQUID TEMPERATURE

oNoNoNe!

|
THL(1)=THB
DO 500 K=2,L+1
THL(K)=THL(K)+2*DT*MUL*(THL(K+1)-THL(K))/
&(DXIL*XIL(K))+DT*MUL*(THL(K+1)-2.0DO*THL(K)+THL(K-1)
&)/(DXIL*DXIL)

500 CONTINUE
T=T+DT

IF (J .EQ.434) THEN
DO 60 Y=1,L+1
WRITE(1,*)XIL(Y),THL(Y)
60 CONTINUE
ENDIF
C
IF (J.LEQ.868) THEN
DO 63 Y=1,L+1
WRITE(2,*)XIL(Y),THL(Y)
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65

75

85

86

87

89

90

CONTINUE
ENDIF

IF (J.EQ.1302) THEN
DO 65 Y=1,L+1

WRITE(3,*)XIL(Y), THL(Y)

CONTINUE
ENDIF

IF (J.EQ.2170) THEN

DO 75 Y=1,L+1

WRITE(4,*)XIL(Y), THL(Y)
CONTINUE

ENDIF

IF (J.EQ. 4340) THEN

DO 85 II=1,L+1

WRITE(S,*)XIL(II), THL(II)
CONTINUE

ENDIF

IF (J.EQ. 2170) THEN

DO 86 II=1,L+1

WRITE(6,*)XILI), THL(II)
CONTINUE

ENDIF

IF (J.EQ. 43400) THEN

DO 87 II=1,L+1

WRITE(7,*)XIL(II), THL(II)
CONTINUE

ENDIF

IF ( J.EQ. 86800) THEN

DO 89 II=1,L+1

WRITE(8,*)XILI), THL(II)
CONTINUE

ENDIF

IF (J.EQ. 217000) THEN

DO 90 I1=1,L+1

WRITE(9,*)XIL(II), THL(II)
CONTINUE

ENDIF
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IF (J.EQ.434000) THEN

DO 91 II=1,L+1

WRITE(10,*)XIL(II),THL(II)
91 CONTINUE

ENDIF

300 CONTINUE

CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)
CLOSE(5)
CLOSE(6)
CLOSE(7)
CLOSE(8)
CLOSE(9)
CLOSE(10)
END
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APPENDIX C

CONVECTIVE HEAT TRANSFER COEFFICIENT
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An experiment was conducted to measure the temperature variation within the
bearing ball with respect to time. An NBD-200 bearing ball with a 14.29 mm diameter was
heated to 537°C before being quenched in a static liquid metal bath at 148°C. The tipof a

thermocouple (type K) was placed at the ball’s center. Figure C1 shows the temperature
variation at the ball’s center with respect to time.

From Fourier law of convection:

dT
=—kA—
1= dr
and from Newton’s law of cooling:
q=hA(T-T,)

at the surface:

mcg-:hA(T—T,o)
dt

mc£= hA(T-T,)
dt

t
mcj T =IhAdt
1 T-To ¢
mcIn(T-T,) |£’+C=hAt| o
(T (T =T _
T, T
hA
—=In T T, /(t, —t
mc [T T, (t=to) -

i lo

hA
(tf - to)
mc

The right or left terms represent the slope of Figure C1. The properties of silicon nitride
bearing ball are:

- mass =4.87 gm,
¢=0.71156 V5 ang
gm° K’

A=6.41x10"m?
In Figure D.1, the slope before 100 msec is -0.40. Therefore,

-4 2
040 = h(64x10 mgv —

(4.87gm)*0.71156
em’K

thus,
w
h| . = 2170 :
static mZ-K
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Figure C1. Dimensionless bearing ball temperature with respect time at the center.
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APPENDIX D

COMPUTER CODE OF THE THERMAL STRESS PROFILE
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C

C

nan

oNONONS

IMPLICIT REAL (A-H,0-Z)
REAL DXI,M,LXIC(850),THC(100000)
REAL RB
REAL F1,F2,T,DR,GC1,GC2,TI,TF,R,SR,ST,F3

# OF CERAMIC DIVISIONS

M=400

RADIUS OF THE CERAMIC

RB =.554D0

INCREMENT IN THE XI DIRECTION

DXI=RB/M

INITIAL CONDITIONS

SOLVING FOR THE TEMPERATURE AT TIME STEP J

OPEN(1,FILE="2MSECC’ FORM="FORMATTED’,STATUS="OLD’)
OPEN(2,FILE="2ST’ ,FORM="FORMATTED’,STATUS="OLD’)
OPEN(3,FILE="3MSEC’ FORM="FORMATTED’ ,STATUS="OLD’)
OPEN(4,FILE="3ST’,FORM="FORMATTED’ ,STATUS="OLD’)
OPEN(5,FILE="5MSEC’,FORM="FORMATTED’,STATUS="OLD’)
OPEN(6,FILE="5ST’ FORM="FORMATTED’ STATUS="OLD’)
OPEN(7,FILE="10MSEC’,FORM="FORMATTEISTATUS="OLD’)
OPEN(8,FILE="10ST’,FORM="FORMATTED’,STATUS="OLD’)
OPEN(9,FILE="50MSEC’ , FORM="FORMATTED’,STATUS="OLD")
OPEN(10,FILE="50ST’,FORM="FORMATTED’,STATUS="OLD")
OPEN(11,FILE="IMSEC’,FORM="FORMATTED’ ,STATUS="OLD’)
OPEN(12,FILE="1ST’ FORM="FORMATTED’,STATUS="OLD’)
OPEN(13,FILE="100MSEC’ FORM="FORMATTED’,STATUS="OLD")
OPEN(14,FILE="100ST’,FORM="FORMATTED’ ,STATUS="OLD")
OPEN(15,FILE="200MSEC’ ,FORM="FORMATTED’ ,STATUS="OLD’)
OPEN(16,FILE="200ST’,FORM="FORMATTED’ ,STATUS="OLD’)
OPEN(17,FILE="500MSEC’ ,FORM="FORMATTED’ ,STATUS="OLD’)
OPEN(18,FILE="500ST’,FORM="FORMATTED’ ,STATUS="OLD")
OPEN(19,FILE="1SEC’, FORM="FORMATTED’ ,STATUS="OLD’)
OPEN(20,FILE="1000ST’,FORM="FORMATTED’,STATUS="OLD’)
GC1 =2.508E6

GC2 = 1.2541E6

I=0
DR =DXI
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100

&
&
&

101

Ro @

F1=0.0D0
F2 =0.0D0
PRINT*,’PLEASE INPUT DELTA T IN DEGREES CELSIUS’
READ*, TI
TI=1667.0D0
TF = 0.0D0
T=0D0

3 3k st e ofe s ok ke ok sk sk sfeshe e sk sk sk sk sk sk ok ok sk sk sk ok sk st sfe sk sk ke sk ok sk sk sk sk skeskeok sk ok sk sk sk koK
3k 3 s ook skeske e sk ke ske ke sk sk sk sk sk sk sk sk sk st sfe sk sfesfesfe sk sk sk sk sk sk sk s st sfe sk ke sfe ke e e e e ok

2MSEC

DO 100 I=1,M+1
READ(1,*)XIC(I),THC(I)
CONTINUE

DO1011=1M

F1 = ((THC() * (T1 - TF) +TF)
* (XICT)*RB)* (XIC(I)*RB)
+THC(+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

CONTINUE
=0
F1 =F1/(RB*RB*RB)
DO 102 I=1.M
R = XIC(I)*RB
T =THC(I) * (TI- TF) +TF
F2 = (THC(I) * (TI - TF) +TF)
* (XIC(I)*RB)* (XIC(I)*RB)
+HTHC(I+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F2

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+4F3-T)
WRITE(2,*)R,T,SR/1E6,ST/1E6
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102 CONTINUE

C e sk e o o ok s ok ke sk e sk e s st sk st ke sk s sk sk st e s ok s sk sk sk stk sk sk sk sk sk skokoke ok seokok

C  #sesksitooino bkl kRl ok
C 3MSEC

F1=0.0D0

F2 =0.0D0

DO 200 I=1,M+1
READ(3,*)XIC(I),THC(I)
200 CONTINUE

DO201I=1M

F1 = ((THC(I) * (TI - TF) +TF)
& * (XIC()*RB)* (XICI)*RB)
& +(THCI+1) * (TI- TF) +TF)
&  * XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

201 CONTINUE
I=0

F1 =F1/(RB*RB*RB)
DO 202 1=1,M
R = XICI)*RB
T = THC(D) * (TI - TF) +TF
F2 = ((THC(I) * (TI - TF) +TF)
* (XIC(I)*RB)* (XIC(I)*RB)
+(THC(1+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I1+1)*RB) *DR/ 2 + F2

R

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(®4,*)R,T,SR/1E6,ST/1E6
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202 CONTINUE

C e ok o sk ok ok s sk sfeskesfe sfesfe sheskesfeoke ke s sk sk ok sk st sk ok sk sk sk sk shesfe ek s sk sk sk ok sk sk sk ok skeskesk

C sk sgol ok ok ook ok ok ook ok s ol ot okl ook
C SMSEC

F1 =0.0D0

F2 =0.0D0

DO 300 I=1,M+1
READ(S,*)XIC(I),THC(I)
300 CONTINUE

DO 301I=1M

F1 = ((THC(I) * (TI - TF) +TF)
& * (XICI)*RB)* (XIC(I)*RB)
&  +THC(I+1) * (TI - TF) +TF)
&  *XICI+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

301 CONTINUE
I=0
F1 =F1/(RB*RB*RB)
DO 302 I=1.M
R =XIC(I)*RB
T = THC(I) * (TI - TF) +TF
F2 = ((THC() * (TI - TF) +TF)
* (XIC(D)*RB)* (XIC(I)*RB)
+(THC(I+1) * (TI - TF) +TF)
# XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F2

R

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(6,*)R,T,SR/1E6,ST/1E6

302 CONTINUE

C ke ok sk sheoke sk skeskeoke sk skeskeske ok sk sk sk sk st stk sk sk sk sfe ke sk s st s sfe sk sk sk sfe s sk sk sk sk ok sk sk sk ok sk ske sk
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C

C

400

401

Ro R R

402

C
C

C

stk s kst s s s s o ks s sk ok stk sk o s ok st e sk kel el e stk sk s ek
10MSEC

F1=0.0D0
F2 =0.0D0

DO 400 I=1,M+1
READ(7,*)XIC(I), THC()
CONTINUE

DO4011=1M

F1 = ((THC(I) * (TI - TF) +TF)
* (XIC(I)*RB)* (XIC(I)*RB)
+(THC(I+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

CONTINUE
I=0
F1 =F1/(RB*RB*RB)
DO 402 I=1,M
R = XIC(I)*RB
T = THC(]) * (T - TF) +TF
F2 = (THC() * (TI - TF) +TF)
* (XIC(I)*RB)* (XIC(I)*RB)
+(THC(I+1) * (T1 - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F2

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(8,*)R,T,SR/1E6,ST/1E6

CONTINUE

sk sk sk sk 3k st sk sk sk sk sfe 3k s 3k ok ok sk ok ok sk sk ok s sk ok sk ke s sk sk sk sk e ske ke sfe sk sheskok ek sk sk sk ek
s o ok ok sk ok sk sk sk sk sk ok sk ske sk sk sk sk ok sk sk sk sk e sk st ske sk sfeske sk stk sfeoke sfe sk sfeskok sfeskokeskeokok

50MSEC

F1 =0.0D0
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F2 =0.0D0

DO 500 I=1,M+1
READ(9,%)XIC(I),THC()
500 CONTINUE

DO5011=1M

F1 = ((THC() * (TI - TF) +TF)
& * (XIC(I)*RB)* (XIC(I)*RB)
&  +(THC(I+1) * (TI - TF) +TF)
&  *XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

501 CONTINUE
I=0
F1 = F1 / (RB*RB*RB)
DO 502 I=1,M
R = XIC(I)*RB
T = THC(I) * (TI - TF) +TF
F2 = (THC(I) * (TI - TF) +TF)
* (XIC()*RB)* (XIC(I)*RB)
+THC(I+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F2

R

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(10,*)R,T,SR/1E6,ST/1E6

502 CONTINUE

C 3k st sk sk o s ok sk she sk ok sheskeskeskosk sk ke sk sk sk sk st sk ok sk sk sk sk ke sk st skeske ke sk s sk sk sk sk ok ok ok sk e sk sk

C sksoksksokomoskookoskoosok sk sk ook stk ook stk otk sk ko ok o ok ok ok o ok
C IMSEC

F1=0.0D0

F2 =0.0D0

DO 600 I=1,M+1
READ(11,*)XIC(I),THC(I)
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600

601

R

602

C

C

C

CONTINUE
DO6011=1M

F1 = ((THC() * (TI- TF) +TF)
* (XIC(I)*RB)* (XIC(I)*RB)
+THCI+1) * (TI- TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

CONTINUE
I=0
F1 =F1/(RB*RB*RB)
DO 602 I=1.M
R = XIC(I)*RB
T = THC(I) * (TI - TF) +TF
F2 = ((THCQ) * (TI - TF) +TF)
* (XIC(D*RB)* (XIC(I)*RB)
+THC1+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F2

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(12,*)R,T,SR/1E6,ST/1E6

CONTINUE

GC1 =2.508E6
GC2 = 1.2541E6

I=0
DR =DXI
F1 =0.0D0
F2 = 0.0D0
PRINT*,’PLEASE INPUT THE DELTA T IN DEGREES CELSIUS’
READ*,TI
TI=667.0D0
TF = 0.0D0
T=0D0

3k sk 3k s ok sk 3k sk ok sk sk sk sfe 3k sk sk sk sk ok ok s sk sk sk ok sk sk ke sk she sk sk ske sk sk sfesie sk sk seokoskoskoskok ek
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C

C

700

e e ok s s ofe o sfesfe s s sk sk sk sk sfe s sk sk sk st sk sk e st sk st sk sk sk ok e sfesfe sk s sk sk sk ok sk sk sk e ok

100MSEC

F1=0.0D0

F2 =0.0D0

DO 700 I=1,M+1
READ(13,*)XIC(I),THC(I)
CONTINUE
DO701I=1M

F1 = ((THC(I) * (TI - TF) +TF)

& * (XICT)*RB)* (XIC(I)*RB)

&
&

701

R

702

C
C

C

+HTHCI+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

CONTINUE
I=0
F1 =F1/ (RB*RB*RB)
DO 702 I=1,.M
R = XIC(I)*RB
T = THC(I) * (TI - TF) +TF
F2 = ((THC(I) * (TI - TF) +TF)
* (XIC(I)*RB)* (XIC(I)*RB)
+(THC(I+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F2

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(14,*)R,T,SR/1E6,ST/1E6

CONTINUE

ek st sfe s ok ke sk ook skeskesfe s sk e s skt s ok ok sk sk ok s sk ok s sk sk sk ok sk ok o o s o ok sk ok s sk sk s ok sk o
e st she sk sk ok s ok o sk e s ook sk sk sk sk sk sk o ok s sk st sk skt sk sk sk sk o sk o sk o sk ok sk sk st ok sk ke

200MSEC
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F1 =0.0D0
F2 =0.0D0

DO 800 I=1,M+1
READ(15,%)XIC(),THC(I)
800 CONTINUE

DO801I=1M

F1 = ((THC(I) * (T1 - TF) +TF)
& *(XICI)*RB)* (XICI)*RB)
& +(THC{I+1) * (TI- TF) +TF)
& *XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

801 CONTINUE
I=0
F1 =F1/(RB*RB*RB)
DO 802 I=1.M
R = XIC(I)*RB
T = THCQ) * (TI- TF) +TF
F2 = ((THC(I) * (T1 - TF) +TF)
* (XICI)*RB)* (XIC(I)*RB)
+(THC(I+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F2

R

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(16,*)R,T,SR/1E6,ST/1E6

802 CONTINUE

C s s sk sk sk sk ok ok ok sk sk ke sk sk sk sk stk sk sk ste sk sk sk sk sk sk sk sk sk sk sk ke sieske sk sfesfe sk s sfeskeske sk ek

C sk sk sk sk ok sk sk sk ok sk sk sk sk sk e sk sk sk ske sk sk st sk sk sk sk sk ofe sk sk sk sk ske sk sfeofe sk ske sk sk s ofe stk sk sk kel
C sk sk sk sk ok sk sk ok sk sk s sk sk sk sk sk e sk sfe sk st e Sfe sfe sfe sk s sfe e s she sk e sk s sk sk sk sk ok sk skesk sk skeoskesk
C

S00MSEC

F1=0.0D0
F2 = 0.0D0

DO 900 I=1,M+1
READ(17,*)XIC(I),THC(I)
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900 CONTINUE
DO9011I=1M

F1 = ((THC() * (TI - TF) +TF)
&  * (XIC(I)*RB)* (XIC(I)*RB)
&  +HTHC((I+1) * (TI - TF) +TF)
&  *XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

901 CONTINUE
I=0
F1 =F1/(RB*RB*RB)
DO 902 I=1,M
R = XIC(I)*RB
T =THC() * (TI - TF) +TF
F2 = ((THC(I) * (T1 - TF) +TF)
* (XIC(I)*RB)* (XIC(I)*RB)
+THC(I+1) * (TI - TF) +TF)
* XIC(I+1)*RB* XIC(I+1)*RB) *DR/ 2 + F2

R R

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(18,*)R,T,SR/1E6,ST/1E6

902 CONTINUE

C ek sk sk sk sk ok sk sk ke sfe e sk sfe sk shesk sk sfe e shesk sk sk sk sk skeok skokeosk sk sk sk skok skosk skeskosk skoskosk sk ok

C  ssskskkoiokoskoksktokokskoRskokskotosk stk sk sk ok ok ok ok ok ok ok sk sk sk ok
C 1SEC

F1=0.0D0

F2 =0.0D0

DO 1110 I=1,M+1
READ(19,*)XIC(I), THC(I)
1110 CONTINUE

DO 1116I=1M
F1 = ((THC() * (TI - TF) +TF)

& ¥ (XICI)*RB)* (XIC(I)*RB)
&  +(THC(I+1) * (TI - TF) +TF)
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& *XICI+1)*RB* XIC(I+1)*RB) *DR/ 2 + F1

1110 CONTINUE
I=0
F1 =F1/(RB*RB*RB)
DO 1120 =1.M
R = XIC(I)*RB
T =THC(I) * (TI- TF) +TF
F2 = (THC() * (T1 - TF) +TF)

* (XICI)*RB)* (XIC(I)*RB)

+THC(I+1) * (T1 - TF) +TF)

* XIC(I+1)*RB* XIC(1+1)*RB) *DR/ 2 + F2

R

F3 = F2/(R*R*R+.0000000001D0)
SR = GC1*(F1 - F3)

ST = GC2*(2*F1+F3-T)
WRITE(20,*)R,T,SR/1E6,ST/1E6

1120 CONTINUE

C 3k sk 3k s ke sfe sk sk sk sk ok s sk sk ok ok sfe ok sk sk o sk sk sfeske ok she ke sk sheske ke shesfeok skeskeske skeskok ke skosk ke sk sk

CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)
CLOSE(5)
CLOSE(6)
CLOSE(7)
CLOSE(8)
CLOSE(9)
CLOSE(10)
CLOSE(11)
CLOSE(12)
CLOSE(13)
CLOSE(14)
CLOSE(15)
CLOSE(16)
CLOSE(17)
CLOSE(18)
CLOSE(19)
CLOSE(20)
END
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